Surface branched covers and geometric 2-orbifolds
HTML articles powered by AMS MathViewer
- by Maria Antonietta Pascali and Carlo Petronio PDF
- Trans. Amer. Math. Soc. 361 (2009), 5885-5920 Request permission
Abstract:
Let $\widetilde \Sigma$ and $\Sigma$ be closed, connected, and orientable surfaces, and let $f:\widetilde \Sigma \to \Sigma$ be a branched cover. For each branching point $x\in \Sigma$ the set of local degrees of $f$ at $f^{-1}(x)$ is a partition of the total degree $d$. The total length of the various partitions is determined by $\chi (\widetilde \Sigma )$, $\chi (\Sigma )$, $d$ and the number of branching points via the Riemann-Hurwitz formula. A very old problem asks whether a collection of partitions of $d$ having the appropriate total length (that we call a candidate cover) always comes from some branched cover. The answer is known to be in the affirmative whenever $\Sigma$ is not the $2$-sphere $S$, while for $\Sigma =S$ exceptions do occur. A long-standing conjecture however asserts that when the degree $d$ is a prime number a candidate cover is always realizable. In this paper we analyze the question from the point of view of the geometry of 2-orbifolds, and we provide strong supporting evidence for the conjecture. In particular, we exhibit three different sequences of candidate covers, indexed by their degree, such that for each sequence:
The degrees giving realizable covers have asymptotically zero density in the naturals.
Each prime degree gives a realizable cover.
References
- Krzysztof Barański, On realizability of branched coverings of the sphere, Topology Appl. 116 (2001), no. 3, 279–291. MR 1857667, DOI 10.1016/S0166-8641(00)00094-8
- P. Corvaja – C. Petronio – U. Zannier, On certain permutation groups and sums of two squares, arXiv:0810.0591.
- Allan L. Edmonds, Ravi S. Kulkarni, and Robert E. Stong, Realizability of branched coverings of surfaces, Trans. Amer. Math. Soc. 282 (1984), no. 2, 773–790. MR 732119, DOI 10.1090/S0002-9947-1984-0732119-5
- Cloyd L. Ezell, Branch point structure of covering maps onto nonorientable surfaces, Trans. Amer. Math. Soc. 243 (1978), 123–133. MR 500900, DOI 10.1090/S0002-9947-1978-0500900-0
- Otto Endler, Compact Riemann surfaces with prescribed ramifications and Puiseux series, Bol. Soc. Brasil. Mat. 2 (1971), no. 2, 61–64. MR 316702, DOI 10.1007/BF02584685
- George K. Francis, Assembling compact Riemann surfaces with given boundary curves and branch points on the sphere, Illinois J. Math. 20 (1976), no. 2, 198–217. MR 402776
- S. M. Gersten, On branched covers of the $2$-sphere by the $2$-sphere, Proc. Amer. Math. Soc. 101 (1987), no. 4, 761–766. MR 911047, DOI 10.1090/S0002-9939-1987-0911047-4
- Alexandre Grothendieck, Esquisse d’un programme, Geometric Galois actions, 1, London Math. Soc. Lecture Note Ser., vol. 242, Cambridge Univ. Press, Cambridge, 1997, pp. 5–48 (French, with French summary). With an English translation on pp. 243–283. MR 1483107
- Robert M. Guralnick, Peter Müller, and Jan Saxl, The rational function analogue of a question of Schur and exceptionality of permutation representations, Mem. Amer. Math. Soc. 162 (2003), no. 773, viii+79. MR 1955160, DOI 10.1090/memo/0773
- A. Hurwitz, Ueber Riemann’sche Flächen mit gegebenen Verzweigungspunkten, Math. Ann. 39 (1891), no. 1, 1–60 (German). MR 1510692, DOI 10.1007/BF01199469
- Dale H. Husemoller, Ramified coverings of Riemann surfaces, Duke Math. J. 29 (1962), 167–174. MR 136726
- A. G. Khovanskii and Smilka Zdravkovska, Branched covers of $S^2$ and braid groups, J. Knot Theory Ramifications 5 (1996), no. 1, 55–75. MR 1373810, DOI 10.1142/S0218216596000059
- A. D. Mednykh, Nonequivalent coverings of Riemann surfaces with a prescribed ramification type, Sibirsk. Mat. Zh. 25 (1984), no. 4, 120–142 (Russian). MR 754748
- A. D. Mednykh, Branched coverings of Riemann surfaces whose branch orders coincide with the multiplicity, Comm. Algebra 18 (1990), no. 5, 1517–1533. MR 1059745, DOI 10.1080/00927879008823980
- Stefano Monni, Jun S. Song, and Yun S. Song, The Hurwitz enumeration problem of branched covers and Hodge integrals, J. Geom. Phys. 50 (2004), no. 1-4, 223–256. MR 2078227, DOI 10.1016/j.geomphys.2003.11.003
- A. Okounkov and R. Pandharipande, Gromov-Witten theory, Hurwitz theory, and completed cycles, Ann. of Math. (2) 163 (2006), no. 2, 517–560. MR 2199225, DOI 10.4007/annals.2006.163.517
- F. Pakovich, On ramification of Laurent polynomials, to appear in J. Knot Theory Ramifications.
- Ekaterina Pervova and Carlo Petronio, On the existence of branched coverings between surfaces with prescribed branch data. I, Algebr. Geom. Topol. 6 (2006), 1957–1985. MR 2263056, DOI 10.2140/agt.2006.6.1957
- Ekaterina Pervova and Carlo Petronio, On the existence of branched coverings between surfaces with prescribed branch data. II, J. Knot Theory Ramifications 17 (2008), no. 7, 787–816. MR 2436584, DOI 10.1142/S0218216508006397
- $http://www.dm.unipi.it/pages/petronio/public\_html/geom\_hurw.html$
- David Singerman, Subgroups of Fuschian groups and finite permutation groups, Bull. London Math. Soc. 2 (1970), 319–323. MR 281805, DOI 10.1112/blms/2.3.319
- René Thom, L’équivalence d’une fonction différentiable et d’un polynome, Topology 3 (1965), no. suppl, suppl. 2, 297–307 (French). MR 187249, DOI 10.1016/0040-9383(65)90079-0
- W. P. Thurston, The geometry and topology of $3$-manifolds, mimeographed notes, Princeton, 1979.
- J. Wolfart, $ABC$ for polynomials, dessins d’enfants and uniformization—a survey, Elementare und analytische Zahlentheorie, Schr. Wiss. Ges. Johann Wolfgang Goethe Univ. Frankfurt am Main, vol. 20, Franz Steiner Verlag Stuttgart, Stuttgart, 2006, pp. 313–345. MR 2310190
- Umberto Zannier, Some remarks on the $S$-unit equation in function fields, Acta Arith. 64 (1993), no. 1, 87–98. MR 1220487, DOI 10.4064/aa-64-1-87-98
- Umberto Zannier, On Davenport’s bound for the degree of $f^3-g^2$ and Riemann’s existence theorem, Acta Arith. 71 (1995), no. 2, 107–137. MR 1339121, DOI 10.4064/aa-71-2-107-137
- Umberto Zannier, Proof of the existence of certain triples of polynomials, Rend. Semin. Mat. Univ. Padova 117 (2007), 167–174. MR 2351792
- Hao Zheng, Realizability of branched coverings of $S^2$, Topology Appl. 153 (2006), no. 12, 2124–2134. MR 2239076, DOI 10.1016/j.topol.2005.08.007
Additional Information
- Maria Antonietta Pascali
- Affiliation: Dipartimento di Matematica, Sapienza Università di Roma, P.le Aldo Moro, 2, 00185 Roma, Italy
- Email: pascali@mat.uniroma1.it
- Carlo Petronio
- Affiliation: Dipartimento di Matematica Applicata, Università di Pisa, Via Filippo Buonarroti, 1C, 56127 Pisa, Italy
- Email: petronio@dm.unipi.it
- Received by editor(s): September 17, 2007
- Published electronically: June 17, 2009
- © Copyright 2009
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 361 (2009), 5885-5920
- MSC (2000): Primary 57M12; Secondary 57M50
- DOI: https://doi.org/10.1090/S0002-9947-09-04779-5
- MathSciNet review: 2529918