GK-dimension of birationally commutative surfaces
HTML articles powered by AMS MathViewer
- by D. Rogalski PDF
- Trans. Amer. Math. Soc. 361 (2009), 5921-5945 Request permission
Abstract:
Let $k$ be an algebraically closed field, let $K/k$ be a finitely generated field extension of transcendence degree $2$, let $\sigma \in \operatorname {Aut}_k(K)$, and let $A \subseteq Q = K[t; \sigma ]$ be an $\mathbb {N}$-graded subalgebra with $\dim _k A_n < \infty$ for all $n \geq 0$. Then if $A$ is big enough in $Q$ in an appropriate sense, we prove that $\operatorname {GK} A = 3,4,5,$ or $\infty$, with the exact value depending only on the geometric properties of $\sigma$. The proof uses techniques in the birational geometry of surfaces which are of independent interest.References
- M. Artin and J. T. Stafford, Noncommutative graded domains with quadratic growth, Invent. Math. 122 (1995), no. 2, 231–276. MR 1358976, DOI 10.1007/BF01231444
- M. Artin and M. Van den Bergh, Twisted homogeneous coordinate rings, J. Algebra 133 (1990), no. 2, 249–271. MR 1067406, DOI 10.1016/0021-8693(90)90269-T
- W. Barth, C. Peters, and A. Van de Ven, Compact complex surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 4, Springer-Verlag, Berlin, 1984. MR 749574, DOI 10.1007/978-3-642-96754-2
- J. Diller and C. Favre, Dynamics of bimeromorphic maps of surfaces, Amer. J. Math. 123 (2001), no. 6, 1135–1169. MR 1867314
- Takao Fujita, Vanishing theorems for semipositive line bundles, Algebraic geometry (Tokyo/Kyoto, 1982) Lecture Notes in Math., vol. 1016, Springer, Berlin, 1983, pp. 519–528. MR 726440, DOI 10.1007/BFb0099977
- Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977. MR 0463157
- Dennis S. Keeler, Criteria for $\sigma$-ampleness, J. Amer. Math. Soc. 13 (2000), no. 3, 517–532. MR 1758752, DOI 10.1090/S0894-0347-00-00334-9
- D. S. Keeler, Ample filters and Frobenius amplitude, preprint, arXiv:math/0603388.
- Günter R. Krause and Thomas H. Lenagan, Growth of algebras and Gelfand-Kirillov dimension, Revised edition, Graduate Studies in Mathematics, vol. 22, American Mathematical Society, Providence, RI, 2000. MR 1721834, DOI 10.1090/gsm/022
- D. S. Keeler, D. Rogalski, and J. T. Stafford, Naïve noncommutative blowing up, Duke Math. J. 126 (2005), no. 3, 491–546. MR 2120116, DOI 10.1215/S0012-7094-04-12633-8
- Robert Lazarsfeld, Positivity in algebraic geometry. I, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 48, Springer-Verlag, Berlin, 2004. Classical setting: line bundles and linear series. MR 2095471, DOI 10.1007/978-3-642-18808-4
- D. Rogalski and J. T. Stafford, A class of noncommutative projective surfaces, preprint, arXiv:math/0612657.
- D. Rogalski and J. T. Stafford, Naïve noncommutative blowups at zero-dimensional schemes, J. Algebra 318 (2007), no. 2, 794–833. MR 2371973, DOI 10.1016/j.jalgebra.2007.02.017
- D. Rogalski and J. J. Zhang, Canonical maps to twisted rings, Math. Z. 259 (2008), no. 2, 433–455. MR 2390090, DOI 10.1007/s00209-006-0964-4
- Igor R. Shafarevich, Basic algebraic geometry. 1, 2nd ed., Springer-Verlag, Berlin, 1994. Varieties in projective space; Translated from the 1988 Russian edition and with notes by Miles Reid. MR 1328833
- James S. Vandergraft, Spectral properties of matrices which have invariant cones, SIAM J. Appl. Math. 16 (1968), 1208–1222. MR 244284, DOI 10.1137/0116101
Additional Information
- D. Rogalski
- Affiliation: Department of Mathematics, University of California, San Diego, La Jolla, California 92093-0112
- MR Author ID: 734142
- Email: drogalsk@math.ucsd.edu
- Received by editor(s): September 19, 2007
- Published electronically: June 15, 2009
- Additional Notes: The author was partially supported by the NSF through grants DMS-0202479 and DMS-0600834.
- © Copyright 2009
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 361 (2009), 5921-5945
- MSC (2000): Primary 14A22, 14E05, 16P90, 16S38, 16W50
- DOI: https://doi.org/10.1090/S0002-9947-09-04885-5
- MathSciNet review: 2529919