Denjoy constructions for fibered homeomorphisms of the torus
HTML articles powered by AMS MathViewer
- by F. Béguin, S. Crovisier, Tobias Jäger and F. Le Roux PDF
- Trans. Amer. Math. Soc. 361 (2009), 5851-5883 Request permission
Abstract:
We construct different types of quasiperiodically forced circle homeomorphisms with transitive but non-minimal dynamics. Concerning the recent Poincaré-like classification by Jäger and Stark for this class of maps, we demonstrate that transitive but non-minimal behaviour can occur in each of the different cases. This closes one of the last gaps in the topological classification.
Actually, we are able to get some transitive quasiperiodically forced circle homeomorphisms with rather complicated minimal sets. For example, we show that in some of the examples we construct, the unique minimal set is a Cantor set and its intersection with each vertical fibre is uncountable and nowhere dense (but may contain isolated points).
We also prove that minimal sets of the latter kind cannot occur when the dynamics are given by the projective action of a quasiperiodic $\mbox {SL}(2,\mathbb R)$-cocycle. More precisely, we show that for a quasiperiodic $\mbox {SL}(2,\mathbb R)$-cocycle, any minimal proper subset of the torus either is a union of finitely many continuous curves or contains at most two points on generic fibres.
References
- Tobias H. Jäger and Jaroslav Stark, Towards a classification for quasiperiodically forced circle homeomorphisms, J. London Math. Soc. (2) 73 (2006), no. 3, 727–744. MR 2241977, DOI 10.1112/S0024610706022782
- Serge Aubry and Gilles André, Analyticity breaking and Anderson localization in incommensurate lattices, Group theoretical methods in physics (Proc. Eighth Internat. Colloq., Kiryat Anavim, 1979) Ann. Israel Phys. Soc., vol. 3, Hilger, Bristol, 1980, pp. 133–164. MR 626837
- Àlex Haro and Joaquim Puig, Strange nonchaotic attractors in Harper maps, Chaos 16 (2006), no. 3, 033127, 7. MR 2266838, DOI 10.1063/1.2259821
- Mingzhou Ding, Celso Grebogi, and Edward Ott. Evolution of attractors in quasiperiodically forced systems: From quasiperiodic to strange nonchaotic to chaotic. Physical Review A, 39(5):2593–2598, 1989.
- Michael-R. Herman, Une méthode pour minorer les exposants de Lyapounov et quelques exemples montrant le caractère local d’un théorème d’Arnol′d et de Moser sur le tore de dimension $2$, Comment. Math. Helv. 58 (1983), no. 3, 453–502 (French). MR 727713, DOI 10.1007/BF02564647
- Tobias H. Jäger and Gerhard Keller, The Denjoy type of argument for quasiperiodically forced circle diffeomorphisms, Ergodic Theory Dynam. Systems 26 (2006), no. 2, 447–465. MR 2218770, DOI 10.1017/S0143385705000477
- Anatole Katok and Boris Hasselblatt, Introduction to the modern theory of dynamical systems, Encyclopedia of Mathematics and its Applications, vol. 54, Cambridge University Press, Cambridge, 1995. With a supplementary chapter by Katok and Leonardo Mendoza. MR 1326374, DOI 10.1017/CBO9780511809187
- Kristian Bjerklöv, Positive Lyapunov exponent and minimality for a class of one-dimensional quasi-periodic Schrödinger equations, Ergodic Theory Dynam. Systems 25 (2005), no. 4, 1015–1045. MR 2158395, DOI 10.1017/S0143385704000999
- M. Rees, A point distal transformation of the torus, Israel J. Math. 32 (1979), no. 2-3, 201–208. MR 531263, DOI 10.1007/BF02764916
- M. Rees, A minimal positive entropy homeomorphism of the $2$-torus, J. London Math. Soc. (2) 23 (1981), no. 3, 537–550. MR 616561, DOI 10.1112/jlms/s2-23.3.537
- François Béguin, Sylvain Crovisier, and Frédéric Le Roux, Construction of curious minimal uniquely ergodic homeomorphisms on manifolds: the Denjoy-Rees technique, Ann. Sci. École Norm. Sup. (4) 40 (2007), no. 2, 251–308 (English, with English and French summaries). MR 2339286, DOI 10.1016/j.ansens.2007.01.001
- L. G. Shnirelman. An example of a transformation of the plane. Proc. Don Polytechnic Inst. (Novochekassk), 14 (Science section, Fis-math. part), 1930.
- A. S. Besicovitch, A problem on topological transformations of the plane. II, Proc. Cambridge Philos. Soc. 47 (1951), 38–45. MR 39247, DOI 10.1017/s0305004100026347
- Bassam Fayad and Anatole Katok, Constructions in elliptic dynamics, Ergodic Theory Dynam. Systems 24 (2004), no. 5, 1477–1520. MR 2104594, DOI 10.1017/S0143385703000798
- Artur Avila and Raphaël Krikorian, Reducibility or nonuniform hyperbolicity for quasiperiodic Schrödinger cocycles, Ann. of Math. (2) 164 (2006), no. 3, 911–940. MR 2259248, DOI 10.4007/annals.2006.164.911
- Kristian Bjerklöv and Russell Johnson, Minimal subsets of projective flows, Discrete Contin. Dyn. Syst. Ser. B 9 (2008), no. 3-4, 493–516. MR 2379423, DOI 10.3934/dcdsb.2008.9.493
- Kristian Bjerklöv, Dynamics of the quasi-periodic Schrödinger cocycle at the lowest energy in the spectrum, Comm. Math. Phys. 272 (2007), no. 2, 397–442. MR 2300248, DOI 10.1007/s00220-007-0238-y
- H. Furstenberg, Strict ergodicity and transformation of the torus, Amer. J. Math. 83 (1961), 573–601. MR 133429, DOI 10.2307/2372899
- Ph. Thieullen, Ergodic reduction of random products of two-by-two matrices, J. Anal. Math. 73 (1997), 19–64. MR 1616461, DOI 10.1007/BF02788137
- J. Stark, Transitive sets for quasi-periodically forced monotone maps, Dyn. Syst. 18 (2003), no. 4, 351–364. MR 2021504, DOI 10.1080/14689360310001610155
Additional Information
- F. Béguin
- Affiliation: Laboratoire de mathématiques (UMR 8628), Université Paris Sud, 91405 Orsay Cedex, France
- S. Crovisier
- Affiliation: CNRS et LAGA (UMR 7539), Université Paris 13, Avenue J.-B. Clément, 93430 Villetaneuse, France
- MR Author ID: 691227
- Tobias Jäger
- Affiliation: Collège de France, 3 rue d’ulm, 75005 Paris, France
- F. Le Roux
- Affiliation: Laboratoire de mathématiques (UMR 8628), Université Paris Sud, 91405 Orsay Cedex, France
- Received by editor(s): September 12, 2007
- Published electronically: June 11, 2009
- © Copyright 2009
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 361 (2009), 5851-5883
- MSC (2000): Primary 37E10; Secondary 37E30, 37E45, 37C55
- DOI: https://doi.org/10.1090/S0002-9947-09-04914-9
- MathSciNet review: 2529917