## Decay estimates for wave equations with variable coefficients

HTML articles powered by AMS MathViewer

- by Petronela Radu, Grozdena Todorova and Borislav Yordanov PDF
- Trans. Amer. Math. Soc.
**362**(2010), 2279-2299 Request permission

## Abstract:

We establish weighted $L^2-$estimates for dissipative wave equations with variable coefficients that exhibit a dissipative term with a space dependent potential. These results yield decay estimates for the energy and the $L^2-$norm of solutions. The proof is based on the multiplier method where multipliers are specially engineered from asymptotic profiles of related parabolic equations.## References

- Viorel Barbu,
*Nonlinear semigroups and differential equations in Banach spaces*, Editura Academiei Republicii Socialiste Romรขnia, Bucharest; Noordhoff International Publishing, Leiden, 1976. Translated from the Romanian. MR**0390843**, DOI 10.1007/978-94-010-1537-0 - Lawrence C. Evans,
*Partial differential equations*, Graduate Studies in Mathematics, vol. 19, American Mathematical Society, Providence, RI, 1998. MR**1625845** - Shao Ji Feng and De Xing Feng,
*Nonlinear internal damping of wave equations with variable coefficients*, Acta Math. Sin. (Engl. Ser.)**20**(2004), no.ย 6, 1057โ1072. MR**2130371**, DOI 10.1007/s10114-004-0394-3 - Mitsuru Ikawa,
*Hyperbolic partial differential equations and wave phenomena*, Translations of Mathematical Monographs, vol. 189, American Mathematical Society, Providence, RI, 2000. Translated from the 1997 Japanese original by Bohdan I. Kurpita; Iwanami Series in Modern Mathematics. MR**1756774**, DOI 10.1090/mmono/189 - Ryo Ikehata,
*Local energy decay for linear wave equations with variable coefficients*, J. Math. Anal. Appl.**306**(2005), no.ย 1, 330โ348. MR**2132904**, DOI 10.1016/j.jmaa.2004.12.056 - Han Yang and Albert Milani,
*On the diffusion phenomenon of quasilinear hyperbolic waves*, Bull. Sci. Math.**124**(2000), no.ย 5, 415โ433 (English, with English and French summaries). MR**1781556**, DOI 10.1016/S0007-4497(00)00141-X - Cathleen S. Morawetz,
*The decay of solutions of the exterior initial-boundary value problem for the wave equation*, Comm. Pure Appl. Math.**14**(1961), 561โ568. MR**132908**, DOI 10.1002/cpa.3160140327 - Takashi Narazaki,
*$L^p$-$L^q$ estimates for damped wave equations and their applications to semi-linear problem*, J. Math. Soc. Japan**56**(2004), no.ย 2, 585โ626. MR**2048476**, DOI 10.2969/jmsj/1191418647 - Michael Reissig,
*$L_p$-$L_q$ decay estimates for wave equations with time-dependent coefficients*, J. Nonlinear Math. Phys.**11**(2004), no.ย 4, 534โ548. MR**2098544**, DOI 10.2991/jnmp.2004.11.4.9 - Reissig, M. and Wirth, J.,
*$L^p-L^q$ estimates for wave equations with monotone time-dependent dissipation*, Proceedings of the RIMS Symposium on Mathematical Models of Phenomena and Evolution Equations (to appear). - Todorova, G; Yordanov, B.,
*Weighted $L^2$ Estimates for Dissipative Wave Equations with Variable Coefficients*(to appear). - Grozdena Todorova and Borislav Yordanov,
*Nonlinear dissipative wave equations with potential*, Control methods in PDE-dynamical systems, Contemp. Math., vol. 426, Amer. Math. Soc., Providence, RI, 2007, pp.ย 317โ337. MR**2311533**, DOI 10.1090/conm/426/08196 - Jens Wirth,
*Solution representations for a wave equation with weak dissipation*, Math. Methods Appl. Sci.**27**(2004), no.ย 1, 101โ124. MR**2023397**, DOI 10.1002/mma.446 - Jens Wirth,
*Wave equations with time-dependent dissipation. I. Non-effective dissipation*, J. Differential Equations**222**(2006), no.ย 2, 487โ514. MR**2208294**, DOI 10.1016/j.jde.2005.07.019 - Jens Wirth,
*Wave equations with time-dependent dissipation. II. Effective dissipation*, J. Differential Equations**232**(2007), no.ย 1, 74โ103. MR**2281190**, DOI 10.1016/j.jde.2006.06.004

## Additional Information

**Petronela Radu**- Affiliation: Department of Mathematics and Statistics, University of Nebraska-Lincoln, Lincoln, Nebraska 68588
- Email: pradu@math.unl.edu
**Grozdena Todorova**- Affiliation: Department of Mathematics, University of Tennessee, Knoxville, Knoxville, Tennessee 37996
- Email: todorova@math.utk.edu
**Borislav Yordanov**- Affiliation: Department of Mathematics, University of Tennessee, Knoxville, Knoxville, Tennessee 37996
- Email: yordanov@math.utk.edu
- Received by editor(s): October 4, 2007
- Published electronically: December 14, 2009
- © Copyright 2009
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc.
**362**(2010), 2279-2299 - MSC (2000): Primary 35L05, 35L15; Secondary 37L15
- DOI: https://doi.org/10.1090/S0002-9947-09-04742-4
- MathSciNet review: 2584601