## Prime numbers in logarithmic intervals

HTML articles powered by AMS MathViewer

- by Danilo Bazzanella, Alessandro Languasco and Alessandro Zaccagnini PDF
- Trans. Amer. Math. Soc.
**362**(2010), 2667-2684 Request permission

## Abstract:

Let $X$ be a large parameter. We will first give a new estimate for the integral moments of primes in short intervals of the type $(p,p+h]$, where $p\leq X$ is a prime number and $h=o(X)$. Then we will apply this to prove that for every $\lambda >1/2$ there exists a positive proportion of primes $p\leq X$ such that the interval $(p,p+ \lambda \log X]$ contains at least a prime number. As a consequence we improve Cheer and Goldston’s result on the size of real numbers $\lambda >1$ with the property that there is a positive proportion of integers $m\leq X$ such that the interval $(m,m+ \lambda \log X]$ contains no primes. We also prove other results concerning the moments of the gaps between consecutive primes and about the positive proportion of integers $m\leq X$ such that the interval $(m,m+ \lambda \log X]$ contains at least a prime number. The last applications of these techniques are two theorems (the first one unconditional and the second one in which we assume the validity of the Riemann Hypothesis and of a form of the Montgomery pair correlation conjecture) on the positive proportion of primes $p\leq X$ such that the interval $(p,p+ \lambda \log X]$ contains no primes.## References

- E. Bombieri and H. Davenport,
*Small differences between prime numbers*, Proc. Roy. Soc. London Ser. A**293**(1966), 1–18. MR**199165**, DOI 10.1098/rspa.1966.0155 - A. Y. Cheer and D. A. Goldston,
*Longer than average intervals containing no primes*, Trans. Amer. Math. Soc.**304**(1987), no. 2, 469–486. MR**911080**, DOI 10.1090/S0002-9947-1987-0911080-7 - A. Y. Cheer and D. A. Goldston,
*A moment method for primes in short intervals*, C. R. Math. Rep. Acad. Sci. Canada**9**(1987), no. 2, 101–106. MR**880600** - Jing Run Chen,
*On the Goldbach’s problem and the sieve methods*, Sci. Sinica**21**(1978), no. 6, 701–739. MR**517935** - P. Erdös,
*The difference of consecutive primes*, Duke Math. J.**6**(1940), 438–441. MR**1759**, DOI 10.1215/S0012-7094-40-00635-4 - É. Fouvry and F. Grupp,
*On the switching principle in sieve theory*, J. Reine Angew. Math.**370**(1986), 101–126. MR**852513** - J. B. Friedlander and D. A. Goldston,
*Some singular series averages and the distribution of Goldbach numbers in short intervals*, Illinois J. Math.**39**(1995), no. 1, 158–180. MR**1299655**, DOI 10.1215/ijm/1255986635 - P. X. Gallagher,
*On the distribution of primes in short intervals*, Mathematika**23**(1976), no. 1, 4–9. MR**409385**, DOI 10.1112/S0025579300016442 - P. X. Gallagher,
*Corrigendum: “On the distribution of primes in short intervals” [Mathematika 23 (1976), no. 1, 4–9; MR 53 #13140]*, Mathematika**28**(1981), no. 1, 86. MR**632799**, DOI 10.1112/S0025579300015382 - D.A. Goldston, J. Pintz, and C.Y. Yıldırım. Primes in Tuples I.
*to appear in Ann. Math*, 2005. http://arxiv.org/abs/math/0508185. - D. A. Goldston and C. Y. Yıldırım,
*Higher correlations of divisor sums related to primes. III. Small gaps between primes*, Proc. Lond. Math. Soc. (3)**95**(2007), no. 3, 653–686. MR**2368279**, DOI 10.1112/plms/pdm021 - H. Halberstam and H.-E. Richert,
*Sieve methods*, London Mathematical Society Monographs, No. 4, Academic Press [Harcourt Brace Jovanovich, Publishers], London-New York, 1974. MR**0424730** - G.H. Hardy and J.E. Littlewood. Some problems of Partitio Numerorum: VII.
*Unpublished*, 1926. - D. R. Heath-Brown,
*Gaps between primes, and the pair correlation of zeros of the zeta function*, Acta Arith.**41**(1982), no. 1, 85–99. MR**667711**, DOI 10.4064/aa-41-1-85-99 - M. N. Huxley,
*On the difference between consecutive primes*, Invent. Math.**15**(1972), 164–170. MR**292774**, DOI 10.1007/BF01418933 - M. N. Huxley,
*Small differences between consecutive primes*, Mathematika**20**(1973), 229–232. MR**352021**, DOI 10.1112/S0025579300004836 - N. I. Klimov,
*Combination of elementary and analytic methods in the theory of numbers*, Uspehi Mat. Nauk (N.S.)**13**(1958), no. 3 (81), 145–164 (Russian). MR**0097372** - Helmut Maier,
*Small differences between prime numbers*, Michigan Math. J.**35**(1988), no. 3, 323–344. MR**978303**, DOI 10.1307/mmj/1029003814 - A. Perelli and S. Salerno,
*On an average of primes in short intervals*, Acta Arith.**42**(1982/83), no. 1, 91–96. MR**679000**, DOI 10.4064/aa-42-1-91-96 - Alberto Perelli and Saverio Salerno,
*On $2k$-dimensional density estimates*, Studia Sci. Math. Hungar.**20**(1985), no. 1-4, 345–355. MR**886039** - J. Barkley Rosser and Lowell Schoenfeld,
*Approximate formulas for some functions of prime numbers*, Illinois J. Math.**6**(1962), 64–94. MR**137689** - J. Wu,
*Chen’s double sieve, Goldbach’s conjecture and the twin prime problem*, Acta Arith.**114**(2004), no. 3, 215–273. MR**2071082**, DOI 10.4064/aa114-3-2

## Additional Information

**Danilo Bazzanella**- Affiliation: Dipartimento di Matematica, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
- Email: danilo.bazzanella@polito.it
**Alessandro Languasco**- Affiliation: Dipartimento di Matematica Pura e Applicata, Università di Padova, Via Trieste 63, 35121 Padova, Italy
- MR Author ID: 354780
- ORCID: 0000-0003-2723-554X
- Email: languasco@math.unipd.it
**Alessandro Zaccagnini**- Affiliation: Dipartimento di Matematica, Università di Parma, Parco Area delle Scienze, 53/a, Campus Universitario, 43100 Parma, Italy
- Email: alessandro.zaccagnini@unipr.it
- Received by editor(s): September 17, 2008
- Published electronically: November 17, 2009
- © Copyright 2009
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc.
**362**(2010), 2667-2684 - MSC (2010): Primary 11N05; Secondary 11A41
- DOI: https://doi.org/10.1090/S0002-9947-09-05009-0
- MathSciNet review: 2584615