## On abstract Strichartz estimates and the Strauss conjecture for nontrapping obstacles

HTML articles powered by AMS MathViewer

- by Kunio Hidano, Jason Metcalfe, Hart F. Smith, Christopher D. Sogge and Yi Zhou PDF
- Trans. Amer. Math. Soc.
**362**(2010), 2789-2809 Request permission

## Abstract:

We establish the Strauss conjecture concerning small-data global existence for nonlinear wave equations, in the setting of exterior domains to compact obstacles, for space dimensions $n=3$ and $4$. The obstacle is assumed to be nontrapping, and the solution is assumed to satisfy either Dirichlet or Neumann conditions along the boundary of the obstacle. The key step in the proof is establishing certain “abstract Strichartz estimates” for the linear wave equation on exterior domains.## References

- M. Ben-Artzi,
*Regularity and smoothing for some equations of evolution*, Nonlinear partial differential equations and their applications. Collège de France Seminar, Vol. XI (Paris, 1989–1991) Pitman Res. Notes Math. Ser., vol. 299, Longman Sci. Tech., Harlow, 1994, pp. 1–12. MR**1268897** - Matania Ben-Artzi and Sergiu Klainerman,
*Decay and regularity for the Schrödinger equation*, J. Anal. Math.**58**(1992), 25–37. Festschrift on the occasion of the 70th birthday of Shmuel Agmon. MR**1226935**, DOI 10.1007/BF02790356 - M. D. Blair, H. F. Smith and C. D. Sogge:
*Strichartz estimates for the wave equation on manifolds with boundary*, Ann. Inst. H. Poincaré Anal. Non Linéaire, to appear. - N. Burq,
*Global Strichartz estimates for nontrapping geometries: about an article by H. F. Smith and C. D. Sogge: “Global Strichartz estimates for nontrapping perturbations of the Laplacian” [Comm. Partial Differential Equation 25 (2000), no. 11-12 2171–2183; MR1789924 (2001j:35180)]*, Comm. Partial Differential Equations**28**(2003), no. 9-10, 1675–1683. MR**2001179**, DOI 10.1081/PDE-120024528 - Nicolas Burq, Gilles Lebeau, and Fabrice Planchon,
*Global existence for energy critical waves in 3-D domains*, J. Amer. Math. Soc.**21**(2008), no. 3, 831–845. MR**2393429**, DOI 10.1090/S0894-0347-08-00596-1 - N. Burq and F. Planchon:
*Global existence for energy critical waves in 3-d domains: Neumann boundary conditions*, Amer. J. Math., to appear. - Michael Christ and Alexander Kiselev,
*Maximal functions associated to filtrations*, J. Funct. Anal.**179**(2001), no. 2, 409–425. MR**1809116**, DOI 10.1006/jfan.2000.3687 - Yi Du, Jason Metcalfe, Christopher D. Sogge, and Yi Zhou,
*Concerning the Strauss conjecture and almost global existence for nonlinear Dirichlet-wave equations in 4-dimensions*, Comm. Partial Differential Equations**33**(2008), no. 7-9, 1487–1506. MR**2450167**, DOI 10.1080/03605300802239803 - Yi Du and Yi Zhou,
*The lifespan for nonlinear wave equation outside of star-shaped obstacle in three space dimensions*, Comm. Partial Differential Equations**33**(2008), no. 7-9, 1455–1486. MR**2450166**, DOI 10.1080/03605300802026242 - D. Fang and C. Wang:
*Weighted Strichartz Estimates with Angular Regularity and their Applications*, arXiv:0802.0058. - Vladimir Georgiev, Hans Lindblad, and Christopher D. Sogge,
*Weighted Strichartz estimates and global existence for semilinear wave equations*, Amer. J. Math.**119**(1997), no. 6, 1291–1319. MR**1481816**, DOI 10.1353/ajm.1997.0038 - Robert T. Glassey,
*Existence in the large for $cmu=F(u)$ in two space dimensions*, Math. Z.**178**(1981), no. 2, 233–261. MR**631631**, DOI 10.1007/BF01262042 - Kunio Hidano,
*Morawetz-Strichartz estimates for spherically symmetric solutions to wave equations and applications to semilinear Cauchy problems*, Differential Integral Equations**20**(2007), no. 7, 735–754. MR**2333654** - K. Hidano:
*Small solutions to semi-linear wave equations with radial data of critical regularity*, Rev. Mat. Iberoamericana, to appear. - Toshihiko Hoshiro,
*On weighted $L^2$ estimates of solutions to wave equations*, J. Anal. Math.**72**(1997), 127–140. MR**1482992**, DOI 10.1007/BF02843156 - Fritz John,
*Blow-up of solutions of nonlinear wave equations in three space dimensions*, Manuscripta Math.**28**(1979), no. 1-3, 235–268. MR**535704**, DOI 10.1007/BF01647974 - Markus Keel, Hart F. Smith, and Christopher D. Sogge,
*Almost global existence for some semilinear wave equations*, J. Anal. Math.**87**(2002), 265–279. Dedicated to the memory of Thomas H. Wolff. MR**1945285**, DOI 10.1007/BF02868477 - Markus Keel and Terence Tao,
*Endpoint Strichartz estimates*, Amer. J. Math.**120**(1998), no. 5, 955–980. MR**1646048**, DOI 10.1353/ajm.1998.0039 - Howard A. Levine,
*Instability and nonexistence of global solutions to nonlinear wave equations of the form $Pu_{tt}=-Au+{\cal F}(u)$*, Trans. Amer. Math. Soc.**192**(1974), 1–21. MR**344697**, DOI 10.1090/S0002-9947-1974-0344697-2 - Ta-Tsien Li and Yi Zhou,
*A note on the life-span of classical solutions to nonlinear wave equations in four space dimensions*, Indiana Univ. Math. J.**44**(1995), no. 4, 1207–1248. MR**1386767**, DOI 10.1512/iumj.1995.44.2026 - Hans Lindblad and Christopher D. Sogge,
*On existence and scattering with minimal regularity for semilinear wave equations*, J. Funct. Anal.**130**(1995), no. 2, 357–426. MR**1335386**, DOI 10.1006/jfan.1995.1075 - Hans Lindblad and Christopher D. Sogge,
*Long-time existence for small amplitude semilinear wave equations*, Amer. J. Math.**118**(1996), no. 5, 1047–1135. MR**1408499**, DOI 10.1353/ajm.1996.0042 - R. B. Melrose,
*Singularities and energy decay in acoustical scattering*, Duke Math. J.**46**(1979), no. 1, 43–59. MR**523601**, DOI 10.1215/S0012-7094-79-04604-0 - R. B. Melrose and J. Sjöstrand,
*Singularities of boundary value problems. I*, Comm. Pure Appl. Math.**31**(1978), no. 5, 593–617. MR**492794**, DOI 10.1002/cpa.3160310504 - Jason L. Metcalfe,
*Global Strichartz estimates for solutions to the wave equation exterior to a convex obstacle*, Trans. Amer. Math. Soc.**356**(2004), no. 12, 4839–4855. MR**2084401**, DOI 10.1090/S0002-9947-04-03667-0 - Cathleen S. Morawetz,
*Decay for solutions of the exterior problem for the wave equation*, Comm. Pure Appl. Math.**28**(1975), 229–264. MR**372432**, DOI 10.1002/cpa.3160280204 - Cathleen S. Morawetz, James V. Ralston, and Walter A. Strauss,
*Decay of solutions of the wave equation outside nontrapping obstacles*, Comm. Pure Appl. Math.**30**(1977), no. 4, 447–508. MR**509770**, DOI 10.1002/cpa.3160300405 - Peter D. Lax and Ralph S. Phillips,
*Scattering theory*, 2nd ed., Pure and Applied Mathematics, vol. 26, Academic Press, Inc., Boston, MA, 1989. With appendices by Cathleen S. Morawetz and Georg Schmidt. MR**1037774** - James Ralston,
*Note on the decay of acoustic waves*, Duke Math. J.**46**(1979), no. 4, 799–804. MR**552527** - Yoshihiro Shibata and Yoshio Tsutsumi,
*Global existence theorem for nonlinear wave equation in exterior domain*, Recent topics in nonlinear PDE (Hiroshima, 1983) North-Holland Math. Stud., vol. 98, North-Holland, Amsterdam, 1984, pp. 155–196. MR**839275**, DOI 10.1016/S0304-0208(08)71498-1 - Thomas C. Sideris,
*Nonexistence of global solutions to semilinear wave equations in high dimensions*, J. Differential Equations**52**(1984), no. 3, 378–406. MR**744303**, DOI 10.1016/0022-0396(84)90169-4 - Hart F. Smith and Christopher D. Sogge,
*On the critical semilinear wave equation outside convex obstacles*, J. Amer. Math. Soc.**8**(1995), no. 4, 879–916. MR**1308407**, DOI 10.1090/S0894-0347-1995-1308407-1 - Hart F. Smith and Christopher D. Sogge,
*Global Strichartz estimates for nontrapping perturbations of the Laplacian*, Comm. Partial Differential Equations**25**(2000), no. 11-12, 2171–2183. MR**1789924**, DOI 10.1080/03605300008821581 - Hart F. Smith and Christopher D. Sogge,
*On the $L^p$ norm of spectral clusters for compact manifolds with boundary*, Acta Math.**198**(2007), no. 1, 107–153. MR**2316270**, DOI 10.1007/s11511-007-0014-z - Christopher D. Sogge,
*Lectures on nonlinear wave equations*, Monographs in Analysis, II, International Press, Boston, MA, 1995. MR**1715192** - Christopher D. Sogge,
*Lectures on non-linear wave equations*, 2nd ed., International Press, Boston, MA, 2008. MR**2455195** - Daniel Tataru,
*Strichartz estimates in the hyperbolic space and global existence for the semilinear wave equation*, Trans. Amer. Math. Soc.**353**(2001), no. 2, 795–807. MR**1804518**, DOI 10.1090/S0002-9947-00-02750-1 - Michael E. Taylor,
*Grazing rays and reflection of singularities of solutions to wave equations*, Comm. Pure Appl. Math.**29**(1976), no. 1, 1–38. MR**397175**, DOI 10.1002/cpa.3160290102 - B. R. Vaĭnberg,
*The short-wave asymptotic behavior of the solutions of stationary problems, and the asymptotic behavior as $t\rightarrow \infty$ of the solutions of nonstationary problems*, Uspehi Mat. Nauk**30**(1975), no. 2(182), 3–55 (Russian). MR**0415085** - Yi Zhou,
*Cauchy problem for semilinear wave equations in four space dimensions with small initial data*, J. Partial Differential Equations**8**(1995), no. 2, 135–144. MR**1331521**

## Additional Information

**Kunio Hidano**- Affiliation: Department of Mathematics, Mie University, Mie Prefecture, Japan
**Jason Metcalfe**- Affiliation: Department of Mathematics, University of North Carolina, Chapel Hill, North Carolina 27599-3260
- MR Author ID: 733199
**Hart F. Smith**- Affiliation: Department of Mathematics, University of Washington, Seattle, Washington 98195-4350
**Christopher D. Sogge**- Affiliation: Department of Mathematics, Johns Hopkins University, Baltimore, Maryland 21244
- MR Author ID: 164510
**Yi Zhou**- Affiliation: School of Mathematical Science, Fudan University, Shanghai, People’s Republic of China
- Received by editor(s): February 13, 2009
- Published electronically: December 8, 2009
- Additional Notes: The first author was supported in part by the Grant-in-Aid for Young Scientists (B) (No. 18740069), The Ministry of Education, Culture, Sports, Science and Technology, Japan, and he would like to thank the Department of Mathematics at the Johns Hopkins University for the hospitality and financial support during his visit where part of this research was carried out

The second, third and fourth authors were supported by the National Science Foundation

The fifth author was supported by project 10728101 of NSFC and the “111” project and Doctoral Programme Foundation of the Ministry of Education of China. - © Copyright 2009
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc.
**362**(2010), 2789-2809 - MSC (2000): Primary 35L05, 35L20, 35L71
- DOI: https://doi.org/10.1090/S0002-9947-09-05053-3
- MathSciNet review: 2584618