Traces of heat operators on Riemannian foliations
HTML articles powered by AMS MathViewer
- by Ken Richardson
- Trans. Amer. Math. Soc. 362 (2010), 2301-2337
- DOI: https://doi.org/10.1090/S0002-9947-09-05069-7
- Published electronically: December 8, 2009
- PDF | Request permission
Abstract:
We consider the basic heat operator on functions on a Riemannian foliation of a compact, Riemannian manifold, and we show that the trace $K_{B}(t)$ of this operator has a particular asymptotic expansion as $t\to 0$. The coefficients of $t^{\alpha }$ and of $t^{\alpha }(\log t)^{\beta }$ in this expansion are obtainable from local transverse geometric invariants - functions computable by analyzing the manifold in an arbitrarily small neighborhood of a leaf closure. Using this expansion, we prove some results about the spectrum of the basic Laplacian, such as the analogue of Weyl’s asymptotic formula. Also, we explicitly calculate the first two nontrivial coefficients of the expansion for special cases such as codimension two foliations and foliations with regular closure.References
- Jesús A. Alvarez López, The basic component of the mean curvature of Riemannian foliations, Ann. Global Anal. Geom. 10 (1992), no. 2, 179–194. MR 1175918, DOI 10.1007/BF00130919
- M. Atiyah, R. Bott, and V. K. Patodi, On the heat equation and the index theorem, Invent. Math. 19 (1973), 279–330. MR 650828, DOI 10.1007/BF01425417
- Marcel Berger, Sur les variétés $(4/23)$-pincées de dimension $5$, C. R. Acad. Sci. Paris 257 (1963), 4122–4125 (French). MR 158332
- Marcel Berger, Paul Gauduchon, and Edmond Mazet, Le spectre d’une variété riemannienne, Lecture Notes in Mathematics, Vol. 194, Springer-Verlag, Berlin-New York, 1971 (French). MR 0282313, DOI 10.1007/BFb0064643
- Nicole Berline, Ezra Getzler, and Michèle Vergne, Heat kernels and Dirac operators, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 298, Springer-Verlag, Berlin, 1992. MR 1215720, DOI 10.1007/978-3-642-58088-8
- David D. Bleecker, The supertrace of the steady asymptotic of the spinorial heat kernel, J. Math. Phys. 33 (1992), no. 6, 2053–2070. MR 1164316, DOI 10.1063/1.529628
- Glen E. Bredon, Introduction to compact transformation groups, Pure and Applied Mathematics, Vol. 46, Academic Press, New York-London, 1972. MR 0413144
- Theodor Bröcker and Tammo tom Dieck, Representations of compact Lie groups, Graduate Texts in Mathematics, vol. 98, Springer-Verlag, New York, 1985. MR 781344, DOI 10.1007/978-3-662-12918-0
- Jochen Brüning and Ernst Heintze, Representations of compact Lie groups and elliptic operators, Invent. Math. 50 (1978/79), no. 2, 169–203. MR 517776, DOI 10.1007/BF01390288
- Jochen Brüning and Ernst Heintze, The asymptotic expansion of Minakshisundaram-Pleijel in the equivariant case, Duke Math. J. 51 (1984), no. 4, 959–980. MR 771390, DOI 10.1215/S0012-7094-84-05143-3
- J. Brüning and F. W. Kamber, Vanishing theorems and index formulas for transversal Dirac operators, A.M.S. Meeting 845, Special Session on Operator Theory and Applications to Geometry, Lawrence, Kansas, A.M.S. Abstracts, October 1988.
- Roberto Camporesi, The spinor heat kernel in maximally symmetric spaces, Comm. Math. Phys. 148 (1992), no. 2, 283–308. MR 1178146, DOI 10.1007/BF02100862
- René A. Carmona and Wei An Zheng, Reflecting Brownian motions and comparison theorems for Neumann heat kernels, J. Funct. Anal. 123 (1994), no. 1, 109–128. MR 1279298, DOI 10.1006/jfan.1994.1085
- Isaac Chavel, Eigenvalues in Riemannian geometry, Pure and Applied Mathematics, vol. 115, Academic Press, Inc., Orlando, FL, 1984. Including a chapter by Burton Randol; With an appendix by Jozef Dodziuk. MR 768584
- Jeff Cheeger, Analytic torsion and the heat equation, Ann. of Math. (2) 109 (1979), no. 2, 259–322. MR 528965, DOI 10.2307/1971113
- Mircea Craioveanu and Mircea Puta, Asymptotic properties of eigenvalues of the basic Laplacian associated to certain Riemannian foliations, Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 35(83) (1991), no. 1-2, 61–65. MR 1307911
- Harold Donnelly, Spectrum and the fixed point sets of isometries. I, Math. Ann. 224 (1976), no. 2, 161–170. MR 420743, DOI 10.1007/BF01436198
- Harold Donnelly, Asymptotic expansions for the compact quotients of properly discontinuous group actions, Illinois J. Math. 23 (1979), no. 3, 485–496. MR 537804
- Emily B. Dryden, Carolyn S. Gordon, Sarah J. Greenwald, and David L. Webb, Asymptotic expansion of the heat kernel for orbifolds, Michigan Math. J. 56 (2008), no. 1, 205–238. MR 2433665, DOI 10.1307/mmj/1213972406
- Aziz El Kacimi-Alaoui, Équation de la chaleur sur les espaces singuliers, C. R. Acad. Sci. Paris Sér. I Math. 303 (1986), no. 6, 243–246 (French, with English summary). MR 860827
- A. El Kacimi-Alaoui and G. Hector, Décomposition de Hodge basique pour un feuilletage riemannien, Ann. Inst. Fourier (Grenoble) 36 (1986), no. 3, 207–227 (French, with English summary). MR 865667, DOI 10.5802/aif.1066
- Giampiero Esposito, Guglielmo Fucci, Alexander Yu. Kamenshchik, and Klaus Kirsten, Spectral asymptotics of Euclidean quantum gravity with diff-invariant boundary conditions, Classical Quantum Gravity 22 (2005), no. 6, 957–974. MR 2131582, DOI 10.1088/0264-9381/22/6/005
- H. D. Fegan, The heat equation and modular forms, J. Differential Geometry 13 (1978), no. 4, 589–602 (1979). MR 570220, DOI 10.4310/jdg/1214434710
- William Feller, An introduction to probability theory and its applications. Vol. II, John Wiley & Sons, Inc., New York-London-Sydney, 1966. MR 0210154
- Peter B. Gilkey, Invariance theory, the heat equation, and the Atiyah-Singer index theorem, Mathematics Lecture Series, vol. 11, Publish or Perish, Inc., Wilmington, DE, 1984. MR 783634
- J. F. Glazebrook and F. W. Kamber, Transversal Dirac families in Riemannian foliations, Comm. Math. Phys. 140 (1991), no. 2, 217–240. MR 1124268, DOI 10.1007/BF02099498
- Peter Greiner, An asymptotic expansion for the heat equation, Arch. Rational Mech. Anal. 41 (1971), 163–218. MR 331441, DOI 10.1007/BF00276190
- F. B. Hildebrand, Advanced Calculus for Applications, second ed., Prentice Hall, Inc., Englewood Cliffs, N.J., 1976.
- Franz W. Kamber and Philippe Tondeur, de Rham-Hodge theory for Riemannian foliations, Math. Ann. 277 (1987), no. 3, 415–431. MR 891583, DOI 10.1007/BF01458323
- Katsuo Kawakubo, The theory of transformation groups, Translated from the 1987 Japanese edition, The Clarendon Press, Oxford University Press, New York, 1991. MR 1150492
- Jeffrey M. Lee and Ken Richardson, Riemannian foliations and eigenvalue comparison, Ann. Global Anal. Geom. 16 (1998), no. 6, 497–525. MR 1651376, DOI 10.1023/A:1006573301591
- Paul Malliavin and Daniel W. Stroock, Short time behavior of the heat kernel and its logarithmic derivatives, J. Differential Geom. 44 (1996), no. 3, 550–570. MR 1431005
- H. P. McKean Jr. and I. M. Singer, Curvature and the eigenvalues of the Laplacian, J. Differential Geometry 1 (1967), no. 1, 43–69. MR 217739
- J. Milnor, Morse theory, Annals of Mathematics Studies, No. 51, Princeton University Press, Princeton, N.J., 1963. Based on lecture notes by M. Spivak and R. Wells. MR 0163331, DOI 10.1515/9781400881802
- S. Minakshisundaram and Å. Pleijel, Some properties of the eigenfunctions of the Laplace-operator on Riemannian manifolds, Canad. J. Math. 1 (1949), 242–256. MR 31145, DOI 10.4153/cjm-1949-021-5
- Pierre Molino, Riemannian foliations, Progress in Mathematics, vol. 73, Birkhäuser Boston, Inc., Boston, MA, 1988. Translated from the French by Grant Cairns; With appendices by Cairns, Y. Carrière, É. Ghys, E. Salem and V. Sergiescu. MR 932463, DOI 10.1007/978-1-4684-8670-4
- Seiki Nishikawa, Mohan Ramachandran, and Philippe Tondeur, The heat equation for Riemannian foliations, Trans. Amer. Math. Soc. 319 (1990), no. 2, 619–630. MR 987165, DOI 10.1090/S0002-9947-1990-0987165-6
- Seiki Nishikawa, Philippe Tondeur, and Lieven Vanhecke, Spectral geometry for Riemannian foliations, Ann. Global Anal. Geom. 10 (1992), no. 3, 291–304. MR 1186017, DOI 10.1007/BF00136871
- B. Osgood, R. Phillips, and P. Sarnak, Extremals of determinants of Laplacians, J. Funct. Anal. 80 (1988), no. 1, 148–211. MR 960228, DOI 10.1016/0022-1236(88)90070-5
- B. Osgood, R. Phillips, and P. Sarnak, Compact isospectral sets of surfaces, J. Funct. Anal. 80 (1988), no. 1, 212–234. MR 960229, DOI 10.1016/0022-1236(88)90071-7
- Efton Park, Toeplitz algebras associated to isometric flows, Illinois J. Math. 41 (1997), no. 1, 93–102. MR 1433188
- Efton Park and Ken Richardson, The basic Laplacian of a Riemannian foliation, Amer. J. Math. 118 (1996), no. 6, 1249–1275. MR 1420923, DOI 10.1353/ajm.1996.0053
- A. S. Petrow, Einstein-Räume, Akademie-Verlag, Berlin, 1964 (German). Autorisierte bearbeitete Ausgabe; In deutscher Sprache herausgegeben von Hans-Jürgen Treder. MR 0162594
- D. B. Ray and I. M. Singer, $R$-torsion and the Laplacian on Riemannian manifolds, Advances in Math. 7 (1971), 145–210. MR 295381, DOI 10.1016/0001-8708(71)90045-4
- Bruce L. Reinhart, Differential geometry of foliations, Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], vol. 99, Springer-Verlag, Berlin, 1983. The fundamental integrability problem. MR 705126, DOI 10.1007/978-3-642-69015-0
- Ken Richardson, Critical points of the determinant of the Laplace operator, J. Funct. Anal. 122 (1994), no. 1, 52–83. MR 1274583, DOI 10.1006/jfan.1994.1061
- K. Richardson, The asymptotics of heat kernels on Riemannian foliations, Geom. Funct. Anal. 8 (1998), no. 2, 356–401. MR 1616151, DOI 10.1007/s000390050060
- Ken Richardson, The transverse geometry of $G$-manifolds and Riemannian foliations, Illinois J. Math. 45 (2001), no. 2, 517–535. MR 1878616
- John Roe, Elliptic operators, topology and asymptotic methods, Pitman Research Notes in Mathematics Series, vol. 179, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1988. MR 960889
- Philippe Tondeur, Foliations on Riemannian manifolds, Universitext, Springer-Verlag, New York, 1988. MR 934020, DOI 10.1007/978-1-4613-8780-0
- Hermann Weyl, Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung), Math. Ann. 71 (1912), no. 4, 441–479 (German). MR 1511670, DOI 10.1007/BF01456804
- H. E. Winkelnkemper, The graph of a foliation, Ann. Global Anal. Geom. 1 (1983), no. 3, 51–75. MR 739904, DOI 10.1007/BF02329732
Bibliographic Information
- Ken Richardson
- Affiliation: Department of Mathematics, Texas Christian University, TCU Box 298900, Fort Worth, Texas 76129
- Email: k.richardson@tcu.edu
- Received by editor(s): October 8, 2007
- Published electronically: December 8, 2009
- Additional Notes: The author’s research at MSRI was supported in part by NSF grant DMS-9701755.
- © Copyright 2009
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 362 (2010), 2301-2337
- MSC (2010): Primary 53C12, 58J37, 58J35, 58J50
- DOI: https://doi.org/10.1090/S0002-9947-09-05069-7
- MathSciNet review: 2584602