Projectivity of analytic Hilbert and Kähler quotients
HTML articles powered by AMS MathViewer
- by Daniel Greb
- Trans. Amer. Math. Soc. 362 (2010), 3243-3271
- DOI: https://doi.org/10.1090/S0002-9947-10-05000-2
- Published electronically: January 20, 2010
Abstract:
We investigate algebraicity properties of quotients of complex spaces by complex reductive Lie groups $G$. We obtain a projectivity result for compact momentum map quotients of algebraic $G$-varieties. Furthermore, we prove equivariant versions of Kodaira’s Embedding Theorem and Chow’s Theorem relative to an analytic Hilbert quotient. Combining these results we derive an equivariant algebraisation theorem for complex spaces with projective quotient.References
- Daniel Barlet, Espace analytique réduit des cycles analytiques complexes compacts d’un espace analytique complexe de dimension finie, Fonctions de plusieurs variables complexes, II (Sém. François Norguet, 1974–1975) Lecture Notes in Math., Vol. 482, Springer, Berlin, 1975, pp. 1–158 (French). MR 0399503
- A. Białynicki-Birula and J. Święcicka, Three theorems on existence of good quotients, Math. Ann. 307 (1997), no. 1, 143–149. MR 1427680, DOI 10.1007/s002080050027
- Jean-François Boutot, Singularités rationnelles et quotients par les groupes réductifs, Invent. Math. 88 (1987), no. 1, 65–68 (French). MR 877006, DOI 10.1007/BF01405091
- Henri Cartan, Quotients of complex analytic spaces, Contributions to function theory (Internat. Colloq. Function Theory, Bombay, 1960) Tata Institute of Fundamental Research, Bombay, 1960, pp. 1–15. MR 0139769
- Gerd Fischer, Ein relativer Satz von Chow und die Elimination der Unbestimmtheitsstellen meromorpher Funktionen, Math. Ann. 217 (1975), no. 2, 145–152. MR 397031, DOI 10.1007/BF01351292
- Hans Grauert and Reinhold Remmert, Coherent analytic sheaves, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 265, Springer-Verlag, Berlin, 1984. MR 755331, DOI 10.1007/978-3-642-69582-7
- Daniel Greb, Projectivity of analytic Hilbert quotients, Dissertation, Ruhr-Universität Bochum, 2008, electronic version available at: http://www-brs. ub.ruhr-uni-bochum.de/netahtml/HSS/Diss/GrebDaniel/diss.pdf.
- —, $1$-rational singularities and quotients by reductive groups, http://arxiv. org/abs/0901.3539, 2009.
- V. Guillemin and S. Sternberg, Geometric quantization and multiplicities of group representations, Invent. Math. 67 (1982), no. 3, 515–538. MR 664118, DOI 10.1007/BF01398934
- Robin Hartshorne, Ample subvarieties of algebraic varieties, Lecture Notes in Mathematics, Vol. 156, Springer-Verlag, Berlin-New York, 1970. Notes written in collaboration with C. Musili. MR 0282977
- Peter Heinzner, Linear äquivariante Einbettungen Steinscher Räume, Math. Ann. 280 (1988), no. 1, 147–160 (German). MR 928302, DOI 10.1007/BF01474186
- Peter Heinzner, Geometric invariant theory on Stein spaces, Math. Ann. 289 (1991), no. 4, 631–662. MR 1103041, DOI 10.1007/BF01446594
- Peter Heinzner and Alan Huckleberry, Kählerian potentials and convexity properties of the moment map, Invent. Math. 126 (1996), no. 1, 65–84. MR 1408556, DOI 10.1007/s002220050089
- J. Hausen and P. Heinzner, Actions of compact groups on coherent sheaves, Transform. Groups 4 (1999), no. 1, 25–34. MR 1669182, DOI 10.1007/BF01236660
- P. Heinzner, A. T. Huckleberry, and F. Loose, Kählerian extensions of the symplectic reduction, J. Reine Angew. Math. 455 (1994), 123–140. MR 1293876
- Heisuke Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero. I, II, Ann. of Math. (2) 79 (1964), 109–203; 79 (1964), 205–326. MR 0199184, DOI 10.2307/1970547
- P. Heinzner and F. Loose, Reduction of complex Hamiltonian $G$-spaces, Geom. Funct. Anal. 4 (1994), no. 3, 288–297. MR 1274117, DOI 10.1007/BF01896243
- Peter Heinzner and Luca Migliorini, Projectivity of moment map quotients, Osaka J. Math. 38 (2001), no. 1, 167–184. MR 1824905
- Peter Heinzner, Luca Migliorini, and Marzia Polito, Semistable quotients, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 26 (1998), no. 2, 233–248. MR 1631577
- Gerhard P. Hochschild, The structure of Lie groups, Holden-Day Inc., San Francisco, 1965.
- Peter Heinzner and Gerald W. Schwarz, Cartan decomposition of the moment map, Math. Ann. 337 (2007), no. 1, 197–232. MR 2262782, DOI 10.1007/s00208-006-0032-8
- M. M. Kapranov, Chow quotients of Grassmannians. I, I. M. Gel′fand Seminar, Adv. Soviet Math., vol. 16, Amer. Math. Soc., Providence, RI, 1993, pp. 29–110. MR 1237834
- Frances Clare Kirwan, Cohomology of quotients in symplectic and algebraic geometry, Mathematical Notes, vol. 31, Princeton University Press, Princeton, NJ, 1984. MR 766741, DOI 10.2307/j.ctv10vm2m8
- János Kollár and Shigefumi Mori, Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics, vol. 134, Cambridge University Press, Cambridge, 1998. With the collaboration of C. H. Clemens and A. Corti; Translated from the 1998 Japanese original. MR 1658959, DOI 10.1017/CBO9780511662560
- János Kollár, Quotient spaces modulo algebraic groups, Ann. of Math. (2) 145 (1997), no. 1, 33–79. MR 1432036, DOI 10.2307/2951823
- Domingo Luna, Slices étales, Sur les groupes algébriques, Bull. Soc. Math. France, Mém. 33, Soc. Math. France, Paris, 1973, pp. 81–105 (French). MR 0342523, DOI 10.24033/msmf.110
- Domingo Luna, Fonctions différentiables invariantes sous l’opération d’un groupe réductif, Ann. Inst. Fourier (Grenoble) 26 (1976), no. 1, ix, 33–49 (French, with English summary). MR 423398
- D. Mumford, J. Fogarty, and F. Kirwan, Geometric invariant theory, 3rd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete (2) [Results in Mathematics and Related Areas (2)], vol. 34, Springer-Verlag, Berlin, 1994. MR 1304906
- Yoshinori Namikawa, Projectivity criterion of Moishezon spaces and density of projective symplectic varieties, Internat. J. Math. 13 (2002), no. 2, 125–135. MR 1891205, DOI 10.1142/S0129167X02001277
- Amnon Neeman, Analytic questions in geometric invariant theory, Invariant theory (Denton, TX, 1986) Contemp. Math., vol. 88, Amer. Math. Soc., Providence, RI, 1989, pp. 11–23. MR 999979, DOI 10.1090/conm/088/999979
- Reinhold Remmert, Holomorphe und meromorphe Abbildungen komplexer Räume, Math. Ann. 133 (1957), 328–370 (German). MR 92996, DOI 10.1007/BF01342886
- Mark Roberts, A note on coherent $G$-sheaves, Math. Ann. 275 (1986), no. 4, 573–582. MR 859331, DOI 10.1007/BF01459138
- Maxwell Rosenlicht, Some basic theorems on algebraic groups, Amer. J. Math. 78 (1956), 401–443. MR 82183, DOI 10.2307/2372523
- Jean-Pierre Serre, Géométrie algébrique et géométrie analytique, Ann. Inst. Fourier (Grenoble) 6 (1955/56), 1–42 (French). MR 82175
- Reyer Sjamaar, Holomorphic slices, symplectic reduction and multiplicities of representations, Ann. of Math. (2) 141 (1995), no. 1, 87–129. MR 1314032, DOI 10.2307/2118628
- Dennis M. Snow, Reductive group actions on Stein spaces, Math. Ann. 259 (1982), no. 1, 79–97. MR 656653, DOI 10.1007/BF01456830
- Hideyasu Sumihiro, Equivariant completion, J. Math. Kyoto Univ. 14 (1974), 1–28. MR 337963, DOI 10.1215/kjm/1250523277
- J. H. Sampson and G. Washnitzer, A Künneth formula for coherent algebraic sheaves, Illinois J. Math. 3 (1959), 389–402. MR 106906
- Jean Varouchas, Kähler spaces and proper open morphisms, Math. Ann. 283 (1989), no. 1, 13–52. MR 973802, DOI 10.1007/BF01457500
Bibliographic Information
- Daniel Greb
- Affiliation: Fakultät für Mathematik, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
- Address at time of publication: Fakultät für Mathematik, Abteilung für Reine Mathematik, Albert-Ludwigs-Universität Freiburg, Eckerstraße 1, 79104 Freiburg im Breisgau, Germany
- MR Author ID: 888778
- Email: daniel.greb@math.uni-freiburg.de
- Received by editor(s): September 2, 2008
- Published electronically: January 20, 2010
- Additional Notes: The author was supported by the Studienstiftung des deutschen Volkes and by SFB/TR 12 “Symmetries and Universality of Mesoscopic Systems” of the DFG
- © Copyright 2010 Daniel Greb
- Journal: Trans. Amer. Math. Soc. 362 (2010), 3243-3271
- MSC (2000): Primary 14L30, 14L24; Secondary 32M05, 53D20
- DOI: https://doi.org/10.1090/S0002-9947-10-05000-2
- MathSciNet review: 2592955