Boundary behavior of superharmonic functions satisfying nonlinear inequalities in uniform domains
HTML articles powered by AMS MathViewer
- by Kentaro Hirata
- Trans. Amer. Math. Soc. 363 (2011), 4007-4025
- DOI: https://doi.org/10.1090/S0002-9947-2011-05071-3
- Published electronically: March 10, 2011
- PDF | Request permission
Abstract:
In a uniform domain $\Omega$, we investigate the boundary behavior of positive superharmonic functions $u$ satisfying the nonlinear inequality \[ -\Delta u(x) \le c\delta _\Omega (x)^{-\alpha }u(x)^p \quad \text {for a.e. } x\in \Omega \] with some constants $c>0$, $\alpha \in \mathbb {R}$ and $p>0$, where $\Delta$ is the Laplacian and $\delta _\Omega (x)$ is the distance from a point $x$ to the boundary of $\Omega$. In particular, we present a Fatou type theorem concerning the existence of nontangential limits and a Littlewood type theorem concerning the nonexistence of tangential limits.References
- Hiroaki Aikawa, Harmonic functions having no tangential limits, Proc. Amer. Math. Soc. 108 (1990), no. 2, 457–464. MR 990410, DOI 10.1090/S0002-9939-1990-0990410-X
- Hiroaki Aikawa, Harmonic functions and Green potentials having no tangential limits, J. London Math. Soc. (2) 43 (1991), no. 1, 125–136. MR 1099092, DOI 10.1112/jlms/s2-43.1.125
- Hiroaki Aikawa, Boundary Harnack principle and Martin boundary for a uniform domain, J. Math. Soc. Japan 53 (2001), no. 1, 119–145. MR 1800526, DOI 10.2969/jmsj/05310119
- H. Aikawa and A. A. Borichev, Quasiadditivity and measure property of capacity and the tangential boundary behavior of harmonic functions, Trans. Amer. Math. Soc. 348 (1996), no. 3, 1013–1030. MR 1340166, DOI 10.1090/S0002-9947-96-01554-1
- Nicola Arcozzi, Fausto Di Biase, and Rüdiger Urbanke, Approach regions for trees and the unit disc, J. Reine Angew. Math. 472 (1996), 157–175. MR 1384909
- David H. Armitage and Stephen J. Gardiner, Classical potential theory, Springer Monographs in Mathematics, Springer-Verlag London, Ltd., London, 2001. MR 1801253, DOI 10.1007/978-1-4471-0233-5
- Maynard Arsove and Alfred Huber, On the existence of non-tangential limits of subharmonic functions, J. London Math. Soc. 42 (1967), 125–132. MR 203058, DOI 10.1112/jlms/s1-42.1.125
- Richard F. Bass and Dahae You, A Fatou theorem for $\alpha$-harmonic functions, Bull. Sci. Math. 127 (2003), no. 7, 635–648. MR 2004723, DOI 10.1016/S0007-4497(03)00056-3
- Robert Berman and David Singman, Boundary behavior of positive solutions of the Helmholtz equation and associated potentials, Michigan Math. J. 38 (1991), no. 3, 381–393. MR 1116496, DOI 10.1307/mmj/1029004389
- H. E. Bray and G. C. Evans, A Class of Functions Harmonic within the Sphere, Amer. J. Math. 49 (1927), no. 2, 153–180. MR 1506610, DOI 10.2307/2370747
- M. Brelot and J. L. Doob, Limites angulaires et limites fines, Ann. Inst. Fourier (Grenoble) 13 (1963), no. fasc. 2, 395–415 (French). MR 196107
- Lennart Carleson, On the existence of boundary values for harmonic functions in several variables, Ark. Mat. 4 (1962), 393–399 (1962). MR 159013, DOI 10.1007/BF02591620
- Z. Q. Chen, R. J. Williams, and Z. Zhao, On the existence of positive solutions of semilinear elliptic equations with Dirichlet boundary conditions, Math. Ann. 298 (1994), no. 3, 543–556. MR 1262775, DOI 10.1007/BF01459750
- Björn E. J. Dahlberg, Estimates of harmonic measure, Arch. Rational Mech. Anal. 65 (1977), no. 3, 275–288. MR 466593, DOI 10.1007/BF00280445
- Björn E. J. Dahlberg, On the existence of radial boundary values for functions subharmonic in a Lipschitz domain, Indiana Univ. Math. J. 27 (1978), no. 3, 515–526. MR 486569, DOI 10.1512/iumj.1978.27.27035
- Fausto Di Biase, Tangential curves and Fatou’s theorem on trees, J. London Math. Soc. (2) 58 (1998), no. 2, 331–341. MR 1668187, DOI 10.1112/S0024610798006450
- Fausto Di Biase, Alexander Stokolos, Olof Svensson, and Tomasz Weiss, On the sharpness of the Stolz approach, Ann. Acad. Sci. Fenn. Math. 31 (2006), no. 1, 47–59. MR 2210108
- J. L. Doob, A non-probabilistic proof of the relative Fatou theorem, Ann. Inst. Fourier (Grenoble) 9 (1959), 293–300. MR 117454
- Eugene B. Fabes, Nicola Garofalo, and Sandro Salsa, A backward Harnack inequality and Fatou theorem for nonnegative solutions of parabolic equations, Illinois J. Math. 30 (1986), no. 4, 536–565. MR 857210
- P. Fatou, Séries trigonométriques et séries de Taylor, Acta Math. 30 (1906), no. 1, 335–400 (French). MR 1555035, DOI 10.1007/BF02418579
- F. W. Gehring and B. G. Osgood, Uniform domains and the quasihyperbolic metric, J. Analyse Math. 36 (1979), 50–74 (1980). MR 581801, DOI 10.1007/BF02798768
- Kohur Gowrisankaran, Extreme harmonic functions and boundary value problems, Ann. Inst. Fourier (Grenoble) 13 (1963), no. fasc. 2, 307–356. MR 164051
- Kohur Gowrisankaran, Fatou-Naïm-Doob limit theorems in the axiomatic system of Brelot, Ann. Inst. Fourier (Grenoble) 16 (1966), no. fasc. 2, 455–467 (English, with French summary). MR 210917
- Kohur Gowrisankaran and David Singman, Thin sets and boundary behavior of solutions of the Helmholtz equation, Potential Anal. 9 (1998), no. 4, 383–398. MR 1667028, DOI 10.1023/A:1008674809826
- Mary Hanley, Area integrals and boundary behaviour of harmonic functions, Proc. Edinb. Math. Soc. (2) 47 (2004), no. 2, 365–373. MR 2081060, DOI 10.1017/S0013091503000361
- Wolfhard Hansen, Uniform boundary Harnack principle and generalized triangle property, J. Funct. Anal. 226 (2005), no. 2, 452–484. MR 2160104, DOI 10.1016/j.jfa.2004.12.010
- Kentaro Hirata, Sharpness of the Korányi approach region, Proc. Amer. Math. Soc. 133 (2005), no. 8, 2309–2317. MR 2138873, DOI 10.1090/S0002-9939-05-08020-2
- Kentaro Hirata, Sharp estimates for the Green function, 3G inequalities, and nonlinear Schrödinger problems in uniform cones, J. Anal. Math. 99 (2006), 309–332. MR 2279555, DOI 10.1007/BF02789450
- Kentaro Hirata, Boundary behavior of solutions of the Helmholtz equation, Canad. Math. Bull. 52 (2009), no. 4, 555–563. MR 2567150, DOI 10.4153/CMB-2009-056-4
- Kentaro Hirata, The boundary growth of superharmonic functions and positive solutions of nonlinear elliptic equations, Math. Ann. 340 (2008), no. 3, 625–645. MR 2357998, DOI 10.1007/s00208-007-0163-6
- Kentaro Hirata, Boundary behavior of superharmonic functions satisfying nonlinear inequalities in a planar smooth domain, J. Aust. Math. Soc. 87 (2009), no. 2, 253–261. MR 2551121, DOI 10.1017/S1446788709000056
- Richard A. Hunt and Richard L. Wheeden, Positive harmonic functions on Lipschitz domains, Trans. Amer. Math. Soc. 147 (1970), 507–527. MR 274787, DOI 10.1090/S0002-9947-1970-0274787-0
- David S. Jerison and Carlos E. Kenig, Boundary behavior of harmonic functions in nontangentially accessible domains, Adv. in Math. 46 (1982), no. 1, 80–147. MR 676988, DOI 10.1016/0001-8708(82)90055-X
- John T. Kemper, Temperatures in several variables: Kernel functions, representations, and parabolic boundary values, Trans. Amer. Math. Soc. 167 (1972), 243–262. MR 294903, DOI 10.1090/S0002-9947-1972-0294903-6
- Adam Korányi, Harmonic functions on Hermitian hyperbolic space, Trans. Amer. Math. Soc. 135 (1969), 507–516. MR 277747, DOI 10.1090/S0002-9947-1969-0277747-0
- Adam Korányi and J. C. Taylor, Fine convergence and parabolic convergence for the Helmholtz equation and the heat equation, Illinois J. Math. 27 (1983), no. 1, 77–93. MR 684542
- J. E. Littlewood, On a theorem of Fatou, J. London Math. Soc. 2 (1927), 172–176.
- —, On functions subharmonic in a circle (II), Proc. London Math. Soc. (2) 28 (1928), 383–394.
- B. A. Mair and David Singman, A generalized Fatou theorem, Trans. Amer. Math. Soc. 300 (1987), no. 2, 705–719. MR 876474, DOI 10.1090/S0002-9947-1987-0876474-7
- O. Martio, Definitions for uniform domains, Ann. Acad. Sci. Fenn. Ser. A I Math. 5 (1980), no. 1, 197–205. MR 595191, DOI 10.5186/aasfm.1980.0517
- O. Martio and J. Sarvas, Injectivity theorems in plane and space, Ann. Acad. Sci. Fenn. Ser. A I Math. 4 (1979), no. 2, 383–401. MR 565886, DOI 10.5186/aasfm.1978-79.0413
- Yoshihiro Mizuta, On the behavior of potentials near a hyperplane, Hiroshima Math. J. 13 (1983), no. 3, 529–542. MR 725964
- Yoshihiro Mizuta, On the boundary limits of harmonic functions with gradient in $L^{p}$, Ann. Inst. Fourier (Grenoble) 34 (1984), no. 1, 99–109 (English, with French summary). MR 743623
- Yoshihiro Mizuta, Existence of tangential limits for $\alpha$-harmonic functions on half spaces, Potential Anal. 25 (2006), no. 1, 29–36. MR 2238935, DOI 10.1007/s11118-005-9004-y
- Linda Naïm, Sur le rôle de la frontière de R. S. Martin dans la théorie du potentiel, Ann. Inst. Fourier (Grenoble) 7 (1957), 183–281 (French). MR 100174
- Alexander Nagel, Walter Rudin, and Joel H. Shapiro, Tangential boundary behavior of functions in Dirichlet-type spaces, Ann. of Math. (2) 116 (1982), no. 2, 331–360. MR 672838, DOI 10.2307/2007064
- Alexander Nagel and Elias M. Stein, On certain maximal functions and approach regions, Adv. in Math. 54 (1984), no. 1, 83–106. MR 761764, DOI 10.1016/0001-8708(84)90038-0
- Sidney C. Port and Charles J. Stone, Brownian motion and classical potential theory, Probability and Mathematical Statistics, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. MR 0492329
- N. Privalov, Boundary problems of the theory of harmonic and subharmonic functions in space, Mat. Sbornik 45 (1938), 3–25.
- Lotfi Riahi, Singular solutions of a semi-linear elliptic equation on nonsmooth domains, Int. J. Evol. Equ. 2 (2008), no. 4, 387–396. MR 2403847
- J. C. Taylor, Fine and nontangential convergence on an NTA domain, Proc. Amer. Math. Soc. 91 (1984), no. 2, 237–244. MR 740178, DOI 10.1090/S0002-9939-1984-0740178-4
- Elmer Tolsted, Limiting values of subharmonic functions, Proc. Amer. Math. Soc. 1 (1950), 636–647. MR 39862, DOI 10.1090/S0002-9939-1950-0039862-7
- Elmer Tolsted, Non-tangential limits of subharmonic functions, Proc. London Math. Soc. (3) 7 (1957), 321–333. MR 94597, DOI 10.1112/plms/s3-7.1.321
- E. Tolsted, Non-tangential limits of subharmonic functions. II, J. London Math. Soc. 36 (1961), 65–68. MR 125242, DOI 10.1112/jlms/s1-36.1.65
- U. Ufuktepe and Z. Zhao, Positive solutions of nonlinear elliptic equations in the Euclidean plane, Proc. Amer. Math. Soc. 126 (1998), no. 12, 3681–3692. MR 1616593, DOI 10.1090/S0002-9939-98-04985-5
- Jussi Väisälä, Uniform domains, Tohoku Math. J. (2) 40 (1988), no. 1, 101–118. MR 927080, DOI 10.2748/tmj/1178228081
- Jang Mei G. Wu, Comparisons of kernel functions, boundary Harnack principle and relative Fatou theorem on Lipschitz domains, Ann. Inst. Fourier (Grenoble) 28 (1978), no. 4, 147–167, vi (English, with French summary). MR 513884
- Jang Mei G. Wu, $L^{p}$-densities and boundary behaviors of Green potentials, Indiana Univ. Math. J. 28 (1979), no. 6, 895–911. MR 551154, DOI 10.1512/iumj.1979.28.28063
- Qi S. Zhang and Z. Zhao, Singular solutions of semilinear elliptic and parabolic equations, Math. Ann. 310 (1998), no. 4, 777–794. MR 1619760, DOI 10.1007/s002080050170
- Shi Ying Zhao, Boundary behavior of subharmonic functions in nontangential accessible domains, Studia Math. 108 (1994), no. 1, 25–48. MR 1259022, DOI 10.4064/sm-108-1-25-48
- Z. Zhao, On the existence of positive solutions of nonlinear elliptic equations—a probabilistic potential theory approach, Duke Math. J. 69 (1993), no. 2, 247–258. MR 1203227, DOI 10.1215/S0012-7094-93-06913-X
Bibliographic Information
- Kentaro Hirata
- Affiliation: Faculty of Education and Human Studies, Akita University, Akita 010-8502, Japan
- Email: hirata@math.akita-u.ac.jp
- Received by editor(s): March 20, 2008
- Received by editor(s) in revised form: April 1, 2009
- Published electronically: March 10, 2011
- Additional Notes: This work was partially supported by Grant-in-Aid for Young Scientists (B) (No. 19740062), Japan Society for the Promotion of Science.
- © Copyright 2011
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 363 (2011), 4007-4025
- MSC (2010): Primary 31B25; Secondary 31B05, 31A05, 31A20, 31C45, 35J61
- DOI: https://doi.org/10.1090/S0002-9947-2011-05071-3
- MathSciNet review: 2792977