On the pointwise implementation of near-actions

Author:
Asger Törnquist

Journal:
Trans. Amer. Math. Soc. **363** (2011), 4929-4944

MSC (2010):
Primary 03E15, 37A05

DOI:
https://doi.org/10.1090/S0002-9947-2011-05296-7

Published electronically:
March 4, 2011

MathSciNet review:
2806696

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show that the continuum hypothesis implies that every measure preserving near-action of a group on a standard Borel probability space has a pointwise implementation by Borel measure preserving automorphisms.

**1.**T. Carlson, R. Frankiewicz, and P. Zbierski,*Borel liftings of the measure algebra and the failure of the continuum hypothesis*, Proc. Amer. Math. Soc.**120**(1994), no. 4, 1247–1250. MR**1176066**, https://doi.org/10.1090/S0002-9939-1994-1176066-8**2.**Ilijas Farah,*Analytic quotients: theory of liftings for quotients over analytic ideals on the integers*, Mem. Amer. Math. Soc.**148**(2000), no. 702, xvi+177. MR**1711328**, https://doi.org/10.1090/memo/0702**3.**Ilijas Farah,*Rigidity conjectures*, Logic Colloquium 2000, Lect. Notes Log., vol. 19, Assoc. Symbol. Logic, Urbana, IL, 2005, pp. 252–271. MR**2143881****4.**-,*All automorphisms of the Calkin algebra are inner*, to appear in Annals of Math.**5.**D. Fremlin,*Problems*, http://www.essex.ac.uk/maths/staff/fremlin/problems.pdf.**6.**D. H. Fremlin,*Measure theory. Vol. 3*, Torres Fremlin, Colchester, 2004. Measure algebras; Corrected second printing of the 2002 original. MR**2459668****7.**E. Glasner, B. Tsirelson, and B. Weiss,*The automorphism group of the Gaussian measure cannot act pointwise*, Israel J. Math.**148**(2005), 305–329. Probability in mathematics. MR**2191233**, https://doi.org/10.1007/BF02775441**8.**E. Glasner and B. Weiss,*Spatial and non-spatial actions of Polish groups*, Ergodic Theory Dynam. Systems**25**(2005), no. 5, 1521–1538. MR**2173431**, https://doi.org/10.1017/S0143385705000052**9.**Paul R. Halmos,*Lectures on ergodic theory*, Publications of the Mathematical Society of Japan, no. 3, The Mathematical Society of Japan, 1956. MR**0097489****10.**Thomas Jech,*Set theory*, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2003. The third millennium edition, revised and expanded. MR**1940513****11.**Alexander S. Kechris,*Classical descriptive set theory*, Graduate Texts in Mathematics, vol. 156, Springer-Verlag, New York, 1995. MR**1321597****12.**Kenneth Kunen,*Set theory*, Studies in Logic and the Foundations of Mathematics, vol. 102, North-Holland Publishing Co., Amsterdam-New York, 1980. An introduction to independence proofs. MR**597342****13.**A. Kwiatkowska and S. Solecki,*Spatial models of boolean actions and groups of isometries*, to appear in Ergodic Theory and Dynamical Systems.**14.**George W. Mackey,*Point realizations of transformation groups*, Illinois J. Math.**6**(1962), 327–335. MR**0143874****15.**Dorothy Maharam,*On a theorem of von Neumann*, Proc. Amer. Math. Soc.**9**(1958), 987–994. MR**0105479**, https://doi.org/10.1090/S0002-9939-1958-0105479-6**16.**Yiannis N. Moschovakis,*Descriptive set theory*, Studies in Logic and the Foundations of Mathematics, vol. 100, North-Holland Publishing Co., Amsterdam-New York, 1980. MR**561709****17.**N. Christopher Phillips and Nik Weaver,*The Calkin algebra has outer automorphisms*, Duke Math. J.**139**(2007), no. 1, 185–202. MR**2322680**, https://doi.org/10.1215/S0012-7094-07-13915-2**18.**Saharon Shelah,*Lifting problem of the measure algebra*, Israel J. Math.**45**(1983), no. 1, 90–96. MR**710248**, https://doi.org/10.1007/BF02760673**19.**Saharon Shelah,*Proper and improper forcing*, 2nd ed., Perspectives in Mathematical Logic, Springer-Verlag, Berlin, 1998. MR**1623206****20.**Saharon Shelah and Juris Steprāns,*PFA implies all automorphisms are trivial*, Proc. Amer. Math. Soc.**104**(1988), no. 4, 1220–1225. MR**935111**, https://doi.org/10.1090/S0002-9939-1988-0935111-X**21.**Boban Veličković,*𝑂𝐶𝐴 and automorphisms of 𝒫(𝜔)/𝒻𝒾𝓃*, Topology Appl.**49**(1993), no. 1, 1–13. MR**1202874**, https://doi.org/10.1016/0166-8641(93)90127-Y**22.**J. von Neumann and M.H. Stone,*The determination of representative elements in the residual classes of a boolean algebra*, Fundamenta Mathematicae**25**(1935), 353-378.

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (2010):
03E15,
37A05

Retrieve articles in all journals with MSC (2010): 03E15, 37A05

Additional Information

**Asger Törnquist**

Affiliation:
Kurt Gödel Research Center, University of Vienna, Währinger Strasse 25, 1090 Vienna, Austria

Email:
asger@logic.univie.ac.at

DOI:
https://doi.org/10.1090/S0002-9947-2011-05296-7

Keywords:
Ergodic theory,
near-actions,
spatial actions,
descriptive set theory

Received by editor(s):
October 4, 2009

Received by editor(s) in revised form:
January 19, 2010

Published electronically:
March 4, 2011

Additional Notes:
This research was supported by the Austrian Science Foundation FWF grant no. P19375-N18.

Article copyright:
© Copyright 2011
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.