## A limiting free boundary problem ruled by Aronsson’s equation

HTML articles powered by AMS MathViewer

- by Julio D. Rossi and Eduardo V. Teixeira PDF
- Trans. Amer. Math. Soc.
**364**(2012), 703-719 Request permission

## Abstract:

We study the behavior of a $p$-Dirichlet optimal design problem with volume constraint for $p$ large. As the limit of $p$ goes to infinity, we find a limiting free boundary problem governed by the infinity-Laplacian operator. We find a necessary and sufficient condition for uniqueness of the limiting problem and, under such a condition, we determine precisely the optimal configuration for the limiting problem. Finally, we establish convergence results for the free boundaries.## References

- A. Acker and R. Meyer,
*A free boundary problem for the $p$-Laplacian: uniqueness, convexity, and successive approximation of solutions*, Electron. J. Differential Equations (1995), No. 08, approx. 20 pp.}, review= MR**1334863**, - N. Aguilera, H. W. Alt, and L. A. Caffarelli,
*An optimization problem with volume constraint*, SIAM J. Control Optim.**24**(1986), no. 2, 191–198. MR**826512**, DOI 10.1137/0324011 - H. W. Alt and L. A. Caffarelli,
*Existence and regularity for a minimum problem with free boundary*, J. Reine Angew. Math.**325**(1981), 105–144. MR**618549** - N. E. Aguilera, L. A. Caffarelli, and J. Spruck,
*An optimization problem in heat conduction*, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)**14**(1987), no. 3, 355–387 (1988). MR**951225** - Gunnar Aronsson, Michael G. Crandall, and Petri Juutinen,
*A tour of the theory of absolutely minimizing functions*, Bull. Amer. Math. Soc. (N.S.)**41**(2004), no. 4, 439–505. MR**2083637**, DOI 10.1090/S0273-0979-04-01035-3 - T. Bhattacharya, E. DiBenedetto, and J. Manfredi,
*Limits as $p\to \infty$ of $\Delta _pu_p=f$ and related extremal problems*, Rend. Sem. Mat. Univ. Politec. Torino**Special Issue**(1989), 15–68 (1991). Some topics in nonlinear PDEs (Turin, 1989). MR**1155453** - Michael G. Crandall, Hitoshi Ishii, and Pierre-Louis Lions,
*User’s guide to viscosity solutions of second order partial differential equations*, Bull. Amer. Math. Soc. (N.S.)**27**(1992), no. 1, 1–67. MR**1118699**, DOI 10.1090/S0273-0979-1992-00266-5 - Donatella Danielli and Arshak Petrosyan,
*A minimum problem with free boundary for a degenerate quasilinear operator*, Calc. Var. Partial Differential Equations**23**(2005), no. 1, 97–124. MR**2133664**, DOI 10.1007/s00526-004-0294-5 - L. C. Evans and W. Gangbo,
*Differential equations methods for the Monge-Kantorovich mass transfer problem*, Mem. Amer. Math. Soc.**137**(1999), no. 653, viii+66. MR**1464149**, DOI 10.1090/memo/0653 - Julián Fernández Bonder, Sandra Martínez, and Noemi Wolanski,
*An optimization problem with volume constraint for a degenerate quasilinear operator*, J. Differential Equations**227**(2006), no. 1, 80–101. MR**2233955**, DOI 10.1016/j.jde.2006.03.006 - J. García-Azorero, J. J. Manfredi, I. Peral, and J. D. Rossi,
*The Neumann problem for the $\infty$-Laplacian and the Monge-Kantorovich mass transfer problem*, Nonlinear Anal.**66**(2007), no. 2, 349–366. MR**2279530**, DOI 10.1016/j.na.2005.11.030 - Antoine Henrot and Henrik Shahgholian,
*Convexity of free boundaries with Bernoulli type boundary condition*, Nonlinear Anal.**28**(1997), no. 5, 815–823. MR**1422187**, DOI 10.1016/0362-546X(95)00192-X - Antoine Henrot and Henrik Shahgholian,
*Existence of classical solutions to a free boundary problem for the $p$-Laplace operator. I. The exterior convex case*, J. Reine Angew. Math.**521**(2000), 85–97. MR**1752296**, DOI 10.1515/crll.2000.031 - Antoine Henrot and Henrik Shahgholian,
*Existence of classical solutions to a free boundary problem for the $p$-Laplace operator. II. The interior convex case*, Indiana Univ. Math. J.**49**(2000), no. 1, 311–323. MR**1777029**, DOI 10.1512/iumj.2000.49.1711 - Pekka Koskela, Juan J. Manfredi, and Enrique Villamor,
*Regularity theory and traces of ${\scr A}$-harmonic functions*, Trans. Amer. Math. Soc.**348**(1996), no. 2, 755–766. MR**1311911**, DOI 10.1090/S0002-9947-96-01430-4 - John L. Lewis and Andrew L. Vogel,
*Uniqueness in a free boundary problem*, Comm. Partial Differential Equations**31**(2006), no. 10-12, 1591–1614. MR**2273966**, DOI 10.1080/03605300500455909 - C. Lederman,
*A free boundary problem with a volume penalization*, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)**23**(1996), no. 2, 249–300. MR**1433424** - Juan Manfredi, Arshak Petrosyan, and Henrik Shahgholian,
*A free boundary problem for $\infty$-Laplace equation*, Calc. Var. Partial Differential Equations**14**(2002), no. 3, 359–384. MR**1899452**, DOI 10.1007/s005260100107 - Sandra Martínez,
*An optimization problem with volume constraint in Orlicz spaces*, J. Math. Anal. Appl.**340**(2008), no. 2, 1407–1421. MR**2390940**, DOI 10.1016/j.jmaa.2007.09.061 - Sandra Martínez and Noemi Wolanski,
*A minimum problem with free boundary in Orlicz spaces*, Adv. Math.**218**(2008), no. 6, 1914–1971. MR**2431665**, DOI 10.1016/j.aim.2008.03.028 - Krerley Oliveira and Eduardo V. Teixeira,
*An optimization problem with free boundary governed by a degenerate quasilinear operator*, Differential Integral Equations**19**(2006), no. 9, 1061–1080. MR**2262097** - Eduardo V. Teixeira,
*The nonlinear optimization problem in heat conduction*, Calc. Var. Partial Differential Equations**24**(2005), no. 1, 21–46. MR**2157849**, DOI 10.1007/s00526-004-0313-6 - Eduardo V. Teixeira,
*Uniqueness, symmetry and full regularity of free boundary in optimization problems with volume constraint*, Interfaces Free Bound.**9**(2007), no. 1, 133–148. MR**2317302**, DOI 10.4171/IFB/159 - Eduardo V. Teixeira,
*A variational treatment for general elliptic equations of the flame propagation type: regularity of the free boundary*, Ann. Inst. H. Poincaré C Anal. Non Linéaire**25**(2008), no. 4, 633–658 (English, with English and French summaries). MR**2436786**, DOI 10.1016/j.anihpc.2007.02.006 - E. V. Teixeira,
*Optimal design problems in rough inhomogeneous media. Existence theory.*Preprint. arXiv:0710.2936. - E. V. Teixeira,
*Optimal design problems in rough inhomogeneous media. Free boundary regularity theory.*In preparation.

## Additional Information

**Julio D. Rossi**- Affiliation: Departamento de Análisis Matemático, Universidad de Alicante, Alicante, Spain
- MR Author ID: 601009
- ORCID: 0000-0001-7622-2759
- Email: jrossi@dm.uba.ar
**Eduardo V. Teixeira**- Affiliation: Departamento de Matemática, Universidade Federal do Ceará, Campus do Pici - Bloco 914, Fortaleza, CE - Brazil 60.455-760
- MR Author ID: 710372
- Email: eteixeira@ufc.br
- Received by editor(s): March 24, 2009
- Received by editor(s) in revised form: February 9, 2010
- Published electronically: September 13, 2011
- © Copyright 2011 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**364**(2012), 703-719 - MSC (2010): Primary 35R35, 35J70, 62K05, 49L25
- DOI: https://doi.org/10.1090/S0002-9947-2011-05322-5
- MathSciNet review: 2846349