A limiting free boundary problem ruled by Aronsson’s equation
HTML articles powered by AMS MathViewer
- by Julio D. Rossi and Eduardo V. Teixeira
- Trans. Amer. Math. Soc. 364 (2012), 703-719
- DOI: https://doi.org/10.1090/S0002-9947-2011-05322-5
- Published electronically: September 13, 2011
- PDF | Request permission
Abstract:
We study the behavior of a $p$-Dirichlet optimal design problem with volume constraint for $p$ large. As the limit of $p$ goes to infinity, we find a limiting free boundary problem governed by the infinity-Laplacian operator. We find a necessary and sufficient condition for uniqueness of the limiting problem and, under such a condition, we determine precisely the optimal configuration for the limiting problem. Finally, we establish convergence results for the free boundaries.References
- A. Acker and R. Meyer, A free boundary problem for the $p$-Laplacian: uniqueness, convexity, and successive approximation of solutions, Electron. J. Differential Equations (1995), No. 08, approx. 20 pp.}, review= MR 1334863,
- N. Aguilera, H. W. Alt, and L. A. Caffarelli, An optimization problem with volume constraint, SIAM J. Control Optim. 24 (1986), no. 2, 191–198. MR 826512, DOI 10.1137/0324011
- H. W. Alt and L. A. Caffarelli, Existence and regularity for a minimum problem with free boundary, J. Reine Angew. Math. 325 (1981), 105–144. MR 618549
- N. E. Aguilera, L. A. Caffarelli, and J. Spruck, An optimization problem in heat conduction, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 14 (1987), no. 3, 355–387 (1988). MR 951225
- Gunnar Aronsson, Michael G. Crandall, and Petri Juutinen, A tour of the theory of absolutely minimizing functions, Bull. Amer. Math. Soc. (N.S.) 41 (2004), no. 4, 439–505. MR 2083637, DOI 10.1090/S0273-0979-04-01035-3
- T. Bhattacharya, E. DiBenedetto, and J. Manfredi, Limits as $p\to \infty$ of $\Delta _pu_p=f$ and related extremal problems, Rend. Sem. Mat. Univ. Politec. Torino Special Issue (1989), 15–68 (1991). Some topics in nonlinear PDEs (Turin, 1989). MR 1155453
- Michael G. Crandall, Hitoshi Ishii, and Pierre-Louis Lions, User’s guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. (N.S.) 27 (1992), no. 1, 1–67. MR 1118699, DOI 10.1090/S0273-0979-1992-00266-5
- Donatella Danielli and Arshak Petrosyan, A minimum problem with free boundary for a degenerate quasilinear operator, Calc. Var. Partial Differential Equations 23 (2005), no. 1, 97–124. MR 2133664, DOI 10.1007/s00526-004-0294-5
- L. C. Evans and W. Gangbo, Differential equations methods for the Monge-Kantorovich mass transfer problem, Mem. Amer. Math. Soc. 137 (1999), no. 653, viii+66. MR 1464149, DOI 10.1090/memo/0653
- Julián Fernández Bonder, Sandra Martínez, and Noemi Wolanski, An optimization problem with volume constraint for a degenerate quasilinear operator, J. Differential Equations 227 (2006), no. 1, 80–101. MR 2233955, DOI 10.1016/j.jde.2006.03.006
- J. García-Azorero, J. J. Manfredi, I. Peral, and J. D. Rossi, The Neumann problem for the $\infty$-Laplacian and the Monge-Kantorovich mass transfer problem, Nonlinear Anal. 66 (2007), no. 2, 349–366. MR 2279530, DOI 10.1016/j.na.2005.11.030
- Antoine Henrot and Henrik Shahgholian, Convexity of free boundaries with Bernoulli type boundary condition, Nonlinear Anal. 28 (1997), no. 5, 815–823. MR 1422187, DOI 10.1016/0362-546X(95)00192-X
- Antoine Henrot and Henrik Shahgholian, Existence of classical solutions to a free boundary problem for the $p$-Laplace operator. I. The exterior convex case, J. Reine Angew. Math. 521 (2000), 85–97. MR 1752296, DOI 10.1515/crll.2000.031
- Antoine Henrot and Henrik Shahgholian, Existence of classical solutions to a free boundary problem for the $p$-Laplace operator. II. The interior convex case, Indiana Univ. Math. J. 49 (2000), no. 1, 311–323. MR 1777029, DOI 10.1512/iumj.2000.49.1711
- Pekka Koskela, Juan J. Manfredi, and Enrique Villamor, Regularity theory and traces of ${\scr A}$-harmonic functions, Trans. Amer. Math. Soc. 348 (1996), no. 2, 755–766. MR 1311911, DOI 10.1090/S0002-9947-96-01430-4
- John L. Lewis and Andrew L. Vogel, Uniqueness in a free boundary problem, Comm. Partial Differential Equations 31 (2006), no. 10-12, 1591–1614. MR 2273966, DOI 10.1080/03605300500455909
- C. Lederman, A free boundary problem with a volume penalization, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 23 (1996), no. 2, 249–300. MR 1433424
- Juan Manfredi, Arshak Petrosyan, and Henrik Shahgholian, A free boundary problem for $\infty$-Laplace equation, Calc. Var. Partial Differential Equations 14 (2002), no. 3, 359–384. MR 1899452, DOI 10.1007/s005260100107
- Sandra Martínez, An optimization problem with volume constraint in Orlicz spaces, J. Math. Anal. Appl. 340 (2008), no. 2, 1407–1421. MR 2390940, DOI 10.1016/j.jmaa.2007.09.061
- Sandra Martínez and Noemi Wolanski, A minimum problem with free boundary in Orlicz spaces, Adv. Math. 218 (2008), no. 6, 1914–1971. MR 2431665, DOI 10.1016/j.aim.2008.03.028
- Krerley Oliveira and Eduardo V. Teixeira, An optimization problem with free boundary governed by a degenerate quasilinear operator, Differential Integral Equations 19 (2006), no. 9, 1061–1080. MR 2262097
- Eduardo V. Teixeira, The nonlinear optimization problem in heat conduction, Calc. Var. Partial Differential Equations 24 (2005), no. 1, 21–46. MR 2157849, DOI 10.1007/s00526-004-0313-6
- Eduardo V. Teixeira, Uniqueness, symmetry and full regularity of free boundary in optimization problems with volume constraint, Interfaces Free Bound. 9 (2007), no. 1, 133–148. MR 2317302, DOI 10.4171/IFB/159
- Eduardo V. Teixeira, A variational treatment for general elliptic equations of the flame propagation type: regularity of the free boundary, Ann. Inst. H. Poincaré C Anal. Non Linéaire 25 (2008), no. 4, 633–658 (English, with English and French summaries). MR 2436786, DOI 10.1016/j.anihpc.2007.02.006
- E. V. Teixeira, Optimal design problems in rough inhomogeneous media. Existence theory. Preprint. arXiv:0710.2936.
- E. V. Teixeira, Optimal design problems in rough inhomogeneous media. Free boundary regularity theory. In preparation.
Bibliographic Information
- Julio D. Rossi
- Affiliation: Departamento de Análisis Matemático, Universidad de Alicante, Alicante, Spain
- MR Author ID: 601009
- ORCID: 0000-0001-7622-2759
- Email: jrossi@dm.uba.ar
- Eduardo V. Teixeira
- Affiliation: Departamento de Matemática, Universidade Federal do Ceará, Campus do Pici - Bloco 914, Fortaleza, CE - Brazil 60.455-760
- MR Author ID: 710372
- Email: eteixeira@ufc.br
- Received by editor(s): March 24, 2009
- Received by editor(s) in revised form: February 9, 2010
- Published electronically: September 13, 2011
- © Copyright 2011 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 364 (2012), 703-719
- MSC (2010): Primary 35R35, 35J70, 62K05, 49L25
- DOI: https://doi.org/10.1090/S0002-9947-2011-05322-5
- MathSciNet review: 2846349