## Strichartz estimates on Kerr black hole backgrounds

HTML articles powered by AMS MathViewer

- by Mihai Tohaneanu PDF
- Trans. Amer. Math. Soc.
**364**(2012), 689-702 Request permission

## Abstract:

We study the dispersive properties for the wave equation in the Kerr space-time with small angular momentum. The main result of this paper is to establish Strichartz estimates for solutions of the aforementioned equation. This follows a local energy decay result for the Kerr space-time obtained in earlier work of Tataru and the author, and uses the techniques and results by the author and collaborators (2010). As an application, we then prove global well-posedness and uniqueness for the energy critical semilinear wave equation with small initial data.## References

- L. Andersson and P. Blue:
*Hidden symmetries and decay for the wave equation on the Kerr spacetime*, arXiv:0908.2265v1 - Philip Brenner,
*On $L_{p}-L_{p^{\prime } }$ estimates for the wave-equation*, Math. Z.**145**(1975), no. 3, 251–254. MR**387819**, DOI 10.1007/BF01215290 - S. Chandrasekhar,
*The mathematical theory of black holes*, International Series of Monographs on Physics, vol. 69, The Clarendon Press, Oxford University Press, New York, 1992. Revised reprint of the 1983 original; Oxford Science Publications. MR**1210321** - M. Dafermos and I. Rodnianski:
*A proof of the uniform boundedness of solutions to the wave equation on slowly rotating Kerr backgrounds*, arXiv:0805.4309v1 - M. Dafermos and I. Rodnianski:
*Lectures on black holes and linear waves*, arXiv:0811.0354v1 - F. Finster, N. Kamran, J. Smoller, and S.-T. Yau,
*Decay of solutions of the wave equation in the Kerr geometry*, Comm. Math. Phys.**264**(2006), no. 2, 465–503. MR**2215614**, DOI 10.1007/s00220-006-1525-8 - Felix Finster and Joel Smoller,
*A time-independent energy estimate for outgoing scalar waves in the Kerr geometry*, J. Hyperbolic Differ. Equ.**5**(2008), no. 1, 221–255. MR**2405857**, DOI 10.1142/S0219891608001453 - J. Ginibre and G. Velo,
*Generalized Strichartz inequalities for the wave equation*, J. Funct. Anal.**133**(1995), no. 1, 50–68. MR**1351643**, DOI 10.1006/jfan.1995.1119 - S. W. Hawking and G. F. R. Ellis,
*The large scale structure of space-time*, Cambridge Monographs on Mathematical Physics, No. 1, Cambridge University Press, London-New York, 1973. MR**0424186** - L. V. Kapitanskiĭ,
*Some generalizations of the Strichartz-Brenner inequality*, Algebra i Analiz**1**(1989), no. 3, 127–159 (Russian); English transl., Leningrad Math. J.**1**(1990), no. 3, 693–726. MR**1015129** - Markus Keel and Terence Tao,
*Endpoint Strichartz estimates*, Amer. J. Math.**120**(1998), no. 5, 955–980. MR**1646048** - Hans Lindblad and Christopher D. Sogge,
*On existence and scattering with minimal regularity for semilinear wave equations*, J. Funct. Anal.**130**(1995), no. 2, 357–426. MR**1335386**, DOI 10.1006/jfan.1995.1075 - Jeremy Marzuola, Jason Metcalfe, Daniel Tataru, and Mihai Tohaneanu,
*Strichartz estimates on Schwarzschild black hole backgrounds*, Comm. Math. Phys.**293**(2010), no. 1, 37–83. MR**2563798**, DOI 10.1007/s00220-009-0940-z - J. Metcalfe and D. Tataru:
*Global parametrices and dispersive estimates for variable coefficient wave equations*, arXiv:0707.1191. - Gerd Mockenhaupt, Andreas Seeger, and Christopher D. Sogge,
*Local smoothing of Fourier integral operators and Carleson-Sjölin estimates*, J. Amer. Math. Soc.**6**(1993), no. 1, 65–130. MR**1168960**, DOI 10.1090/S0894-0347-1993-1168960-6 - Hartmut Pecher,
*Nonlinear small data scattering for the wave and Klein-Gordon equation*, Math. Z.**185**(1984), no. 2, 261–270. MR**731347**, DOI 10.1007/BF01181697 - Hart F. Smith,
*A parametrix construction for wave equations with $C^{1,1}$ coefficients*, Ann. Inst. Fourier (Grenoble)**48**(1998), no. 3, 797–835 (English, with English and French summaries). MR**1644105** - Robert S. Strichartz,
*A priori estimates for the wave equation and some applications*, J. Functional Analysis**5**(1970), 218–235. MR**0257581**, DOI 10.1016/0022-1236(70)90027-3 - Robert S. Strichartz,
*Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations*, Duke Math. J.**44**(1977), no. 3, 705–714. MR**512086** - Daniel Tataru,
*Strichartz estimates for operators with nonsmooth coefficients and the nonlinear wave equation*, Amer. J. Math.**122**(2000), no. 2, 349–376. MR**1749052** - Daniel Tataru,
*Strichartz estimates for second order hyperbolic operators with nonsmooth coefficients. II*, Amer. J. Math.**123**(2001), no. 3, 385–423. MR**1833146** - Daniel Tataru,
*Strichartz estimates for second order hyperbolic operators with nonsmooth coefficients. III*, J. Amer. Math. Soc.**15**(2002), no. 2, 419–442. MR**1887639**, DOI 10.1090/S0894-0347-01-00375-7 - D. Tataru and M. Tohaneanu:
*Local energy estimate on Kerr black hole backgrounds*, arXiv:0810.5766v2

## Additional Information

**Mihai Tohaneanu**- Affiliation: Department of Mathematics, Purdue University, West Lafayette, Indiana 47907-2067
- Address at time of publication: Department of Mathematics, Johns Hopkins University, Baltimore, Maryland 21218
- Received by editor(s): January 8, 2010
- Published electronically: September 29, 2011
- © Copyright 2011
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc.
**364**(2012), 689-702 - MSC (2010): Primary 35Q75
- DOI: https://doi.org/10.1090/S0002-9947-2011-05405-X
- MathSciNet review: 2846348