Semiconjugacies, pinched Cantor bouquets and hyperbolic orbifolds
HTML articles powered by AMS MathViewer
- by Helena Mihaljević-Brandt PDF
- Trans. Amer. Math. Soc. 364 (2012), 4053-4083 Request permission
Abstract:
Let $f:\mathbb {C}\rightarrow \mathbb {C}$ be a transcendental entire map that is subhyperbolic, i.e., the intersection of the Fatou set $\mathcal {F}(f)$ and the postsingular set $P(f)$ is compact and the intersection of the Julia set $\mathcal {J}(f)$ and $P(f)$ is finite. Assume that no asymptotic value of $f$ belongs to $\mathcal {J}(f)$ and that the local degree of $f$ at all points in $\mathcal {J}(f)$ is bounded by some finite constant. We prove that there is a hyperbolic map $g\in \{z\mapsto f(\lambda z):\; \lambda \in \mathbb {C}\}$ with connected Fatou set such that $f$ and $g$ are semiconjugate on their Julia sets. Furthermore, we show that this semiconjugacy is a conjugacy when restricted to the escaping set $I(g)$ of $g$. In the case where $f$ can be written as a finite composition of maps of finite order, our theorem, together with recent results on Julia sets of hyperbolic maps, implies that $\mathcal {J}(f)$ is a pinched Cantor bouquet, consisting of dynamic rays and their endpoints. Our result also seems to give the first complete description of topological dynamics of an entire transcendental map whose Julia set is the whole complex plane.References
- Jan M. Aarts and Lex G. Oversteegen, The geometry of Julia sets, Trans. Amer. Math. Soc. 338 (1993), no. 2, 897–918. MR 1182980, DOI 10.1090/S0002-9947-1993-1182980-3
- A. F. Beardon and Ch. Pommerenke, The Poincaré metric of plane domains, J. London Math. Soc. (2) 18 (1978), no. 3, 475–483. MR 518232, DOI 10.1112/jlms/s2-18.3.475
- Walter Bergweiler, Iteration of meromorphic functions, Bull. Amer. Math. Soc. (N.S.) 29 (1993), no. 2, 151–188. MR 1216719, DOI 10.1090/S0273-0979-1993-00432-4
- A. Douady and J. H. Hubbard, Étude dynamique des polynômes complexes. Partie I, Publications Mathématiques d’Orsay [Mathematical Publications of Orsay], vol. 84, Université de Paris-Sud, Département de Mathématiques, Orsay, 1984 (French). MR 762431
- David Drasin and Yûsuke Okuyama, Singularities of Schröder maps and unhyperbolicity of rational functions, Comput. Methods Funct. Theory 8 (2008), no. 1-2, 285–302. MR 2419479, DOI 10.1007/BF03321689
- A. È. Erëmenko, On the iteration of entire functions, Dynamical systems and ergodic theory (Warsaw, 1986) Banach Center Publ., vol. 23, PWN, Warsaw, 1989, pp. 339–345. MR 1102727
- A. È. Erëmenko and M. Yu. Lyubich, Dynamical properties of some classes of entire functions, Ann. Inst. Fourier (Grenoble) 42 (1992), no. 4, 989–1020 (English, with English and French summaries). MR 1196102
- Jacek Graczyk and Grzegorz Świątek, The real Fatou conjecture, Annals of Mathematics Studies, vol. 144, Princeton University Press, Princeton, NJ, 1998. MR 1657075, DOI 10.1515/9781400865185
- J. K. Langley and J. H. Zheng, On the fixpoints, multipliers and value distribution of certain classes of meromorphic functions, Ann. Acad. Sci. Fenn. Math. 23 (1998), no. 1, 133–150. MR 1601855
- Curtis T. McMullen, Complex dynamics and renormalization, Annals of Mathematics Studies, vol. 135, Princeton University Press, Princeton, NJ, 1994. MR 1312365
- Helena Mihaljević-Brandt, A landing theorem for dynamic rays of geometrically finite entire functions, J. Lond. Math. Soc. (2) 81 (2010), no. 3, 696–714. MR 2650792, DOI 10.1112/jlms/jdq014
- H. Mihaljević-Brandt, ‘Topological Dynamics of Transcendental Entire Functions’, Ph.D. Thesis, University of Liverpool, 2009.
- H. Mihaljević-Brandt and J. Peter, ‘Poincaré functions with spiders’ webs’, to appear in Proceedings of the AMS.
- John Milnor, Dynamics in one complex variable, 3rd ed., Annals of Mathematics Studies, vol. 160, Princeton University Press, Princeton, NJ, 2006. MR 2193309
- Rolf Nevanlinna, Eindeutige analytische Funktionen, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete, Band XLVI, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1953 (German). 2te Aufl. MR 0057330
- H. Poincaré, ‘Sur une classe nouvelle de transcendantes uniformes’, J. Math. Pures Appliquées IV Ser. 6 (1890), 316–365.
- Lasse Rempe, Topological dynamics of exponential maps on their escaping sets, Ergodic Theory Dynam. Systems 26 (2006), no. 6, 1939–1975. MR 2279273, DOI 10.1017/S0143385706000435
- Lasse Rempe, Rigidity of escaping dynamics for transcendental entire functions, Acta Math. 203 (2009), no. 2, 235–267. MR 2570071, DOI 10.1007/s11511-009-0042-y
- Lasse Rempe, The escaping set of the exponential, Ergodic Theory Dynam. Systems 30 (2010), no. 2, 595–599. MR 2599894, DOI 10.1017/S014338570900008X
- P. J. Rippon and G. M. Stallard, Escaping points of entire functions of small growth, Math. Z. 261 (2009), no. 3, 557–570. MR 2471088, DOI 10.1007/s00209-008-0339-0
- Günter Rottenfusser and Dierk Schleicher, Escaping points of the cosine family, Transcendental dynamics and complex analysis, London Math. Soc. Lecture Note Ser., vol. 348, Cambridge Univ. Press, Cambridge, 2008, pp. 396–424. MR 2458810, DOI 10.1017/CBO9780511735233.016
- Günter Rottenfusser, Johannes Rückert, Lasse Rempe, and Dierk Schleicher, Dynamic rays of bounded-type entire functions, Ann. of Math. (2) 173 (2011), no. 1, 77–125. MR 2753600, DOI 10.4007/annals.2011.173.1.3
- Dierk Schleicher and Johannes Zimmer, Periodic points and dynamic rays of exponential maps, Ann. Acad. Sci. Fenn. Math. 28 (2003), no. 2, 327–354. MR 1996442
- Dierk Schleicher, The dynamical fine structure of iterated cosine maps and a dimension paradox, Duke Math. J. 136 (2007), no. 2, 343–356. MR 2286634, DOI 10.1215/S0012-7094-07-13625-1
- Dierk Schleicher, Hausdorff dimension, its properties, and its surprises, Amer. Math. Monthly 114 (2007), no. 6, 509–528. MR 2321254, DOI 10.1080/00029890.2007.11920440
- W. P. Thurston, ‘Geometry and topology of three-manifolds’, Princeton Lecture Notes (1979).
- W. P. Thurston, ‘On the combinatorics and dynamics of iterated rational maps’, Preprint (1984).
- Georges Valiron, Fonctions analytiques, Presses Universitaires de France, Paris, 1954 (French). MR 0061658
Additional Information
- Helena Mihaljević-Brandt
- Affiliation: Mathematisches Seminar der Christian-Albrechts-Universität zu Kiel, 24118 Kiel, Germany
- Email: helenam@math.uni-kiel.de
- Received by editor(s): November 27, 2009
- Received by editor(s) in revised form: July 5, 2010
- Published electronically: March 22, 2012
- Additional Notes: This work was supported by the Engineering and Physical Sciences Research Council (EPSRC), grant-code: EP/E05285, and was partly supported by the EU Research Training Network Cody.
- © Copyright 2012
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 364 (2012), 4053-4083
- MSC (2010): Primary 37F10; Secondary 30D05, 37F30, 37C15, 37D20
- DOI: https://doi.org/10.1090/S0002-9947-2012-05541-3
- MathSciNet review: 2912445