## On the asymptotics of determinant of Laplacian at the principal boundary of the principal stratum of the moduli space of Abelian differentials

HTML articles powered by AMS MathViewer

- by A. Kokotov PDF
- Trans. Amer. Math. Soc.
**364**(2012), 5645-5671 Request permission

## Abstract:

Let $\mathcal {X}$ be a translation surface of genus $g>1$ with $2g-2$ conical points of angle $4\pi$ and let $\gamma$, $\gamma ’$ be two homologous saddle connections of length $s$ joining two conical points of $\mathcal {X}$ and bounding two surfaces $S^+$ and $S^-$ with boundaries $\partial S^+=\gamma -\gamma ’$ and $\partial S^-=\gamma ’-\gamma$. Gluing the opposite sides of the boundary of each surface $S^+$, $S^-$ one gets two (closed) translation surfaces $\mathcal {X}^+$, $\mathcal {X}^-$ of genera $g^+$, $g^-$; $g^++g^-=g$. Let $\Delta$, $\Delta ^+$ and $\Delta ^-$ be the Friedrichs extensions of the Laplacians corresponding to the (flat conical) metrics on $\mathcal {X}$, $\mathcal {X}^+$ and $\mathcal {X}^-$ respectively. We study the asymptotical behavior of the (modified, i.e. with zero modes excluded) zeta-regularized determinant $\textrm {det}^* \Delta$ as $\gamma$ and $\gamma ’$ shrink. We find the asymptotics \[ \textrm {det}^* \Delta \sim \kappa s^{1/2}\frac {\textrm {Area} (\mathcal {X})}{\textrm {Area} (\mathcal {X}^+)\textrm {Area} (\mathcal {X}^-)} \textrm {det}^* \Delta ^+\textrm {det}^* \Delta ^-\] as $s\to 0$; here $\kappa$ is a certain absolute constant admitting an explicit expression through spectral characteristics of some model operators. We use the obtained result to fix an undetermined constant in the explicit formula for $\textrm {det}^* \Delta$ found in an earlier work by the author and D. Korotkin.## References

- Lars V. Ahlfors and Leo Sario,
*Riemann surfaces*, Princeton Mathematical Series, No. 26, Princeton University Press, Princeton, N.J., 1960. MR**0114911**, DOI 10.1515/9781400874538 - Erik Aurell and Per Salomonson,
*On functional determinants of Laplacians in polygons and simplicial complexes*, Comm. Math. Phys.**165**(1994), no. 2, 233–259. MR**1301847**, DOI 10.1007/BF02099770 - D. Burghelea, L. Friedlander, and T. Kappeler,
*Meyer-Vietoris type formula for determinants of elliptic differential operators*, J. Funct. Anal.**107**(1992), no. 1, 34–65. MR**1165865**, DOI 10.1016/0022-1236(92)90099-5 - Jeff Cheeger,
*Spectral geometry of singular Riemannian spaces*, J. Differential Geom.**18**(1983), no. 4, 575–657 (1984). MR**730920** - Julian Edward and Siye Wu,
*Determinant of the Neumann operator on smooth Jordan curves*, Proc. Amer. Math. Soc.**111**(1991), no. 2, 357–363. MR**1031662**, DOI 10.1090/S0002-9939-1991-1031662-0 - Eskin A., Masur H., Zorich A., Moduli spaces of Abelian differentials: the principal boundary, counting problems and the Siegel-Veech constants, math.DS/0202134.
- John D. Fay,
*Theta functions on Riemann surfaces*, Lecture Notes in Mathematics, Vol. 352, Springer-Verlag, Berlin-New York, 1973. MR**0335789** - John Fay,
*Kernel functions, analytic torsion, and moduli spaces*, Mem. Amer. Math. Soc.**96**(1992), no. 464, vi+123. MR**1146600**, DOI 10.1090/memo/0464 - Hillairet L., Contribution d’orbites périodiques diffractives à la formule de trace, Ph.D. Thesis, L’Institut Fourier, Grenoble, 2002.
- Jay Jorgenson,
*Asymptotic behavior of Faltings’s delta function*, Duke Math. J.**61**(1990), no. 1, 221–254. MR**1068387**, DOI 10.1215/S0012-7094-90-06111-3 - Aleksey Kokotov and Dmitry Korotkin,
*Tau-functions on spaces of abelian differentials and higher genus generalizations of Ray-Singer formula*, J. Differential Geom.**82**(2009), no. 1, 35–100. MR**2504770** - Kokotov A., Korotkin D., Tau-functions on the spaces of Abelian and quadratic differentials and determinants of Laplacians in Strebel metrics of finite volume, preprint of Max-Planck Institute for Mathematics in the Sciences, Leipzig, 46/2004; math.SP/0405042.
- Maxim Kontsevich and Anton Zorich,
*Connected components of the moduli spaces of Abelian differentials with prescribed singularities*, Invent. Math.**153**(2003), no. 3, 631–678. MR**2000471**, DOI 10.1007/s00222-003-0303-x - Yoonweon Lee,
*Burghelea-Friedlander-Kappeler’s gluing formula for the zeta-determinant and its applications to the adiabatic decompositions of the zeta-determinant and the analytic torsion*, Trans. Amer. Math. Soc.**355**(2003), no. 10, 4093–4110. MR**1990576**, DOI 10.1090/S0002-9947-03-03249-5 - Paul Loya, Patrick McDonald, and Jinsung Park,
*Zeta regularized determinants for conic manifolds*, J. Funct. Anal.**242**(2007), no. 1, 195–229. MR**2274020**, DOI 10.1016/j.jfa.2006.04.014 - Rolf E. Lundelius,
*Asymptotics of the determinant of the Laplacian on hyperbolic surfaces of finite volume*, Duke Math. J.**71**(1993), no. 1, 211–242. MR**1230291**, DOI 10.1215/S0012-7094-93-07109-8 - Howard Masur,
*Extension of the Weil-Petersson metric to the boundary of Teichmuller space*, Duke Math. J.**43**(1976), no. 3, 623–635. MR**417456** - Shin Ozawa,
*The first eigenvalue of the Laplacian on two-dimensional Riemannian manifolds*, Tohoku Math. J. (2)**34**(1982), no. 1, 7–14. MR**651702**, DOI 10.2748/tmj/1178229304 - Joseph Polchinski,
*Evaluation of the one loop string path integral*, Comm. Math. Phys.**104**(1986), no. 1, 37–47. MR**834480**, DOI 10.1007/BF01210791 - D. B. Ray and I. M. Singer,
*Analytic torsion for complex manifolds*, Ann. of Math. (2)**98**(1973), 154–177. MR**383463**, DOI 10.2307/1970909 - William I. Weisberger,
*Conformal invariants for determinants of Laplacians on Riemann surfaces*, Comm. Math. Phys.**112**(1987), no. 4, 633–638. MR**910583**, DOI 10.1007/BF01225377 - Richard A. Wentworth,
*Precise constants in bosonization formulas on Riemann surfaces. I*, Comm. Math. Phys.**282**(2008), no. 2, 339–355. MR**2421480**, DOI 10.1007/s00220-008-0560-z - Wentworth R., private communication.
- Richard Wentworth,
*Asymptotics of determinants from functional integration*, J. Math. Phys.**32**(1991), no. 7, 1767–1773. MR**1112704**, DOI 10.1063/1.529239 - R. Wentworth,
*The asymptotics of the Arakelov-Green’s function and Faltings’ delta invariant*, Comm. Math. Phys.**137**(1991), no. 3, 427–459. MR**1105425**, DOI 10.1007/BF02100272 - Scott A. Wolpert,
*Asymptotics of the spectrum and the Selberg zeta function on the space of Riemann surfaces*, Comm. Math. Phys.**112**(1987), no. 2, 283–315. MR**905169**, DOI 10.1007/BF01217814 - Akira Yamada,
*Precise variational formulas for abelian differentials*, Kodai Math. J.**3**(1980), no. 1, 114–143. MR**569537**

## Additional Information

**A. Kokotov**- Affiliation: Department of Mathematics and Statistics, Concordia University, 1455 de Maisonneuve Blvd. West, Montreal, Quebec, Canada H3G 1M8
- MR Author ID: 252297
- Email: alexey@mathstat.concordia.ca
- Received by editor(s): July 6, 2010
- Published electronically: June 14, 2012
- © Copyright 2012
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc.
**364**(2012), 5645-5671 - MSC (2010): Primary 58J52; Secondary 32G15, 14H15, 30F10
- DOI: https://doi.org/10.1090/S0002-9947-2012-05695-9
- MathSciNet review: 2946925