On the asymptotics of determinant of Laplacian at the principal boundary of the principal stratum of the moduli space of Abelian differentials
HTML articles powered by AMS MathViewer
- by A. Kokotov PDF
- Trans. Amer. Math. Soc. 364 (2012), 5645-5671 Request permission
Abstract:
Let $\mathcal {X}$ be a translation surface of genus $g>1$ with $2g-2$ conical points of angle $4\pi$ and let $\gamma$, $\gamma ’$ be two homologous saddle connections of length $s$ joining two conical points of $\mathcal {X}$ and bounding two surfaces $S^+$ and $S^-$ with boundaries $\partial S^+=\gamma -\gamma ’$ and $\partial S^-=\gamma ’-\gamma$. Gluing the opposite sides of the boundary of each surface $S^+$, $S^-$ one gets two (closed) translation surfaces $\mathcal {X}^+$, $\mathcal {X}^-$ of genera $g^+$, $g^-$; $g^++g^-=g$. Let $\Delta$, $\Delta ^+$ and $\Delta ^-$ be the Friedrichs extensions of the Laplacians corresponding to the (flat conical) metrics on $\mathcal {X}$, $\mathcal {X}^+$ and $\mathcal {X}^-$ respectively. We study the asymptotical behavior of the (modified, i.e. with zero modes excluded) zeta-regularized determinant $\textrm {det}^* \Delta$ as $\gamma$ and $\gamma ’$ shrink. We find the asymptotics \[ \textrm {det}^* \Delta \sim \kappa s^{1/2}\frac {\textrm {Area} (\mathcal {X})}{\textrm {Area} (\mathcal {X}^+)\textrm {Area} (\mathcal {X}^-)} \textrm {det}^* \Delta ^+\textrm {det}^* \Delta ^-\] as $s\to 0$; here $\kappa$ is a certain absolute constant admitting an explicit expression through spectral characteristics of some model operators. We use the obtained result to fix an undetermined constant in the explicit formula for $\textrm {det}^* \Delta$ found in an earlier work by the author and D. Korotkin.References
- Lars V. Ahlfors and Leo Sario, Riemann surfaces, Princeton Mathematical Series, No. 26, Princeton University Press, Princeton, N.J., 1960. MR 0114911, DOI 10.1515/9781400874538
- Erik Aurell and Per Salomonson, On functional determinants of Laplacians in polygons and simplicial complexes, Comm. Math. Phys. 165 (1994), no. 2, 233–259. MR 1301847, DOI 10.1007/BF02099770
- D. Burghelea, L. Friedlander, and T. Kappeler, Meyer-Vietoris type formula for determinants of elliptic differential operators, J. Funct. Anal. 107 (1992), no. 1, 34–65. MR 1165865, DOI 10.1016/0022-1236(92)90099-5
- Jeff Cheeger, Spectral geometry of singular Riemannian spaces, J. Differential Geom. 18 (1983), no. 4, 575–657 (1984). MR 730920
- Julian Edward and Siye Wu, Determinant of the Neumann operator on smooth Jordan curves, Proc. Amer. Math. Soc. 111 (1991), no. 2, 357–363. MR 1031662, DOI 10.1090/S0002-9939-1991-1031662-0
- Eskin A., Masur H., Zorich A., Moduli spaces of Abelian differentials: the principal boundary, counting problems and the Siegel-Veech constants, math.DS/0202134.
- John D. Fay, Theta functions on Riemann surfaces, Lecture Notes in Mathematics, Vol. 352, Springer-Verlag, Berlin-New York, 1973. MR 0335789
- John Fay, Kernel functions, analytic torsion, and moduli spaces, Mem. Amer. Math. Soc. 96 (1992), no. 464, vi+123. MR 1146600, DOI 10.1090/memo/0464
- Hillairet L., Contribution d’orbites périodiques diffractives à la formule de trace, Ph.D. Thesis, L’Institut Fourier, Grenoble, 2002.
- Jay Jorgenson, Asymptotic behavior of Faltings’s delta function, Duke Math. J. 61 (1990), no. 1, 221–254. MR 1068387, DOI 10.1215/S0012-7094-90-06111-3
- Aleksey Kokotov and Dmitry Korotkin, Tau-functions on spaces of abelian differentials and higher genus generalizations of Ray-Singer formula, J. Differential Geom. 82 (2009), no. 1, 35–100. MR 2504770
- Kokotov A., Korotkin D., Tau-functions on the spaces of Abelian and quadratic differentials and determinants of Laplacians in Strebel metrics of finite volume, preprint of Max-Planck Institute for Mathematics in the Sciences, Leipzig, 46/2004; math.SP/0405042.
- Maxim Kontsevich and Anton Zorich, Connected components of the moduli spaces of Abelian differentials with prescribed singularities, Invent. Math. 153 (2003), no. 3, 631–678. MR 2000471, DOI 10.1007/s00222-003-0303-x
- Yoonweon Lee, Burghelea-Friedlander-Kappeler’s gluing formula for the zeta-determinant and its applications to the adiabatic decompositions of the zeta-determinant and the analytic torsion, Trans. Amer. Math. Soc. 355 (2003), no. 10, 4093–4110. MR 1990576, DOI 10.1090/S0002-9947-03-03249-5
- Paul Loya, Patrick McDonald, and Jinsung Park, Zeta regularized determinants for conic manifolds, J. Funct. Anal. 242 (2007), no. 1, 195–229. MR 2274020, DOI 10.1016/j.jfa.2006.04.014
- Rolf E. Lundelius, Asymptotics of the determinant of the Laplacian on hyperbolic surfaces of finite volume, Duke Math. J. 71 (1993), no. 1, 211–242. MR 1230291, DOI 10.1215/S0012-7094-93-07109-8
- Howard Masur, Extension of the Weil-Petersson metric to the boundary of Teichmuller space, Duke Math. J. 43 (1976), no. 3, 623–635. MR 417456
- Shin Ozawa, The first eigenvalue of the Laplacian on two-dimensional Riemannian manifolds, Tohoku Math. J. (2) 34 (1982), no. 1, 7–14. MR 651702, DOI 10.2748/tmj/1178229304
- Joseph Polchinski, Evaluation of the one loop string path integral, Comm. Math. Phys. 104 (1986), no. 1, 37–47. MR 834480, DOI 10.1007/BF01210791
- D. B. Ray and I. M. Singer, Analytic torsion for complex manifolds, Ann. of Math. (2) 98 (1973), 154–177. MR 383463, DOI 10.2307/1970909
- William I. Weisberger, Conformal invariants for determinants of Laplacians on Riemann surfaces, Comm. Math. Phys. 112 (1987), no. 4, 633–638. MR 910583, DOI 10.1007/BF01225377
- Richard A. Wentworth, Precise constants in bosonization formulas on Riemann surfaces. I, Comm. Math. Phys. 282 (2008), no. 2, 339–355. MR 2421480, DOI 10.1007/s00220-008-0560-z
- Wentworth R., private communication.
- Richard Wentworth, Asymptotics of determinants from functional integration, J. Math. Phys. 32 (1991), no. 7, 1767–1773. MR 1112704, DOI 10.1063/1.529239
- R. Wentworth, The asymptotics of the Arakelov-Green’s function and Faltings’ delta invariant, Comm. Math. Phys. 137 (1991), no. 3, 427–459. MR 1105425, DOI 10.1007/BF02100272
- Scott A. Wolpert, Asymptotics of the spectrum and the Selberg zeta function on the space of Riemann surfaces, Comm. Math. Phys. 112 (1987), no. 2, 283–315. MR 905169, DOI 10.1007/BF01217814
- Akira Yamada, Precise variational formulas for abelian differentials, Kodai Math. J. 3 (1980), no. 1, 114–143. MR 569537
Additional Information
- A. Kokotov
- Affiliation: Department of Mathematics and Statistics, Concordia University, 1455 de Maisonneuve Blvd. West, Montreal, Quebec, Canada H3G 1M8
- MR Author ID: 252297
- Email: alexey@mathstat.concordia.ca
- Received by editor(s): July 6, 2010
- Published electronically: June 14, 2012
- © Copyright 2012
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 364 (2012), 5645-5671
- MSC (2010): Primary 58J52; Secondary 32G15, 14H15, 30F10
- DOI: https://doi.org/10.1090/S0002-9947-2012-05695-9
- MathSciNet review: 2946925