On the equivalence of stochastic completeness and Liouville and Khas’minskii conditions in linear and nonlinear settings
HTML articles powered by AMS MathViewer
- by Luciano Mari and Daniele Valtorta PDF
- Trans. Amer. Math. Soc. 365 (2013), 4699-4727 Request permission
Abstract:
Set in the Riemannian enviroment, the aim of this paper is to present and discuss some equivalent characterizations of the Liouville property relative to special operators, which in some sense are modeled after the $p$-Laplacian with potential. In particular, we discuss the equivalence between the Liouville property and the Khas’minskii condition, i.e. the existence of an exhaustion function which is also a supersolution for the operator outside a compact set. This generalizes a previous result obtained by one of the authors.References
- Paolo Antonini, Dimitri Mugnai, and Patrizia Pucci, Quasilinear elliptic inequalities on complete Riemannian manifolds, J. Math. Pures Appl. (9) 87 (2007), no. 6, 582–600 (English, with English and French summaries). MR 2335088, DOI 10.1016/j.matpur.2007.04.003
- Anders Björn and Jana Björn, Boundary regularity for $p$-harmonic functions and solutions of the obstacle problem on metric spaces, J. Math. Soc. Japan 58 (2006), no. 4, 1211–1232. MR 2276190
- Felix E. Browder, Existence theorems for nonlinear partial differential equations, Global Analysis (Proc. Sympos. Pure Math., Vol. XVI, Berkeley, Calif., 1968) Amer. Math. Soc., Providence, R.I., 1970, pp. 1–60. MR 0269962
- Roberta Filippucci, Patrizia Pucci, and Marco Rigoli, Non-existence of entire solutions of degenerate elliptic inequalities with weights, Arch. Ration. Mech. Anal. 188 (2008), no. 1, 155–179. MR 2379656, DOI 10.1007/s00205-007-0081-5
- Roberta Filippucci, Patrizia Pucci, and Marco Rigoli, On weak solutions of nonlinear weighted $p$-Laplacian elliptic inequalities, Nonlinear Anal. 70 (2009), no. 8, 3008–3019. MR 2509387, DOI 10.1016/j.na.2008.12.031
- Ronald Gariepy and William P. Ziemer, A regularity condition at the boundary for solutions of quasilinear elliptic equations, Arch. Rational Mech. Anal. 67 (1977), no. 1, 25–39. MR 492836, DOI 10.1007/BF00280825
- David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, Classics in Mathematics, Springer-Verlag, Berlin, 2001. Reprint of the 1998 edition. MR 1814364, DOI 10.1007/978-3-642-61798-0
- Alexander Grigor′yan, Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds, Bull. Amer. Math. Soc. (N.S.) 36 (1999), no. 2, 135–249. MR 1659871, DOI 10.1090/S0273-0979-99-00776-4
- Juha Heinonen, Tero Kilpeläinen, and Olli Martio, Nonlinear potential theory of degenerate elliptic equations, Dover Publications, Inc., Mineola, NY, 2006. Unabridged republication of the 1993 original. MR 2305115
- J. B. Keller, On solutions of $\Delta u=f(u)$, Comm. Pure Appl. Math. 10 (1957), 503–510. MR 91407, DOI 10.1002/cpa.3160100402
- R. Z. Has′minskiĭ, Ergodic properties of recurrent diffusion processes and stabilization of the solution of the Cauchy problem for parabolic equations, Teor. Verojatnost. i Primenen. 5 (1960), 196–214 (Russian, with English summary). MR 0133871
- Tero Kilpeläinen, Singular solutions to $p$-Laplacian type equations, Ark. Mat. 37 (1999), no. 2, 275–289. MR 1714768, DOI 10.1007/BF02412215
- David Kinderlehrer and Guido Stampacchia, An introduction to variational inequalities and their applications, Pure and Applied Mathematics, vol. 88, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1980. MR 567696
- Takeshi Kura, The weak supersolution-subsolution method for second order quasilinear elliptic equations, Hiroshima Math. J. 19 (1989), no. 1, 1–36. MR 1009660
- Zenjiro Kuramochi, Mass distributions on the ideal boundaries of abstract Riemann surfaces. I, Osaka Math. J. 8 (1956), 119–137. MR 79638
- Olga A. Ladyzhenskaya and Nina N. Ural’tseva, Linear and quasilinear elliptic equations, Academic Press, New York-London, 1968. Translated from the Russian by Scripta Technica, Inc; Translation editor: Leon Ehrenpreis. MR 0244627
- Marco Magliaro, Luciano Mari, Paolo Mastrolia, and Marco Rigoli, Keller-Osserman type conditions for differential inequalities with gradient terms on the Heisenberg group, J. Differential Equations 250 (2011), no. 6, 2643–2670. MR 2771261, DOI 10.1016/j.jde.2011.01.006
- Jan Malý and William P. Ziemer, Fine regularity of solutions of elliptic partial differential equations, Mathematical Surveys and Monographs, vol. 51, American Mathematical Society, Providence, RI, 1997. MR 1461542, DOI 10.1090/surv/051
- Luciano Mari, Marco Rigoli, and Alberto G. Setti, Keller-Osserman conditions for diffusion-type operators on Riemannian manifolds, J. Funct. Anal. 258 (2010), no. 2, 665–712. MR 2557951, DOI 10.1016/j.jfa.2009.10.008
- Mitsuru Nakai, On Evans potential, Proc. Japan Acad. 38 (1962), 624–629. MR 150296
- Robert Osserman, On the inequality $\Delta u\geq f(u)$, Pacific J. Math. 7 (1957), 1641–1647. MR 98239
- S. Pigola, M. Rigoli, and A. G. Setti, Maximum principles at infinity on Riemannian manifolds: an overview, Mat. Contemp. 31 (2006), 81–128. Workshop on Differential Geometry (Portuguese). MR 2385438
- Stefano Pigola, Marco Rigoli, and Alberto G. Setti, A remark on the maximum principle and stochastic completeness, Proc. Amer. Math. Soc. 131 (2003), no. 4, 1283–1288. MR 1948121, DOI 10.1090/S0002-9939-02-06672-8
- Stefano Pigola, Marco Rigoli, and Alberto G. Setti, Maximum principles on Riemannian manifolds and applications, Mem. Amer. Math. Soc. 174 (2005), no. 822, x+99. MR 2116555, DOI 10.1090/memo/0822
- Stefano Pigola, Marco Rigoli, and Alberto G. Setti, Some non-linear function theoretic properties of Riemannian manifolds, Rev. Mat. Iberoam. 22 (2006), no. 3, 801–831. MR 2320402, DOI 10.4171/RMI/474
- Stefano Pigola, Marco Rigoli, and Alberto G. Setti, Aspects of potential theory on manifolds, linear and non-linear, Milan J. Math. 76 (2008), 229–256. MR 2465992, DOI 10.1007/s00032-008-0084-1
- Patrizia Pucci, Marco Rigoli, and James Serrin, Qualitative properties for solutions of singular elliptic inequalities on complete manifolds, J. Differential Equations 234 (2007), no. 2, 507–543. MR 2300666, DOI 10.1016/j.jde.2006.11.013
- Patrizia Pucci and James Serrin, The maximum principle, Progress in Nonlinear Differential Equations and their Applications, vol. 73, Birkhäuser Verlag, Basel, 2007. MR 2356201, DOI 10.1007/978-3-7643-8145-5
- Patrizia Pucci, James Serrin, and Henghui Zou, A strong maximum principle and a compact support principle for singular elliptic inequalities, J. Math. Pures Appl. (9) 78 (1999), no. 8, 769–789. MR 1715341, DOI 10.1016/S0021-7824(99)00030-6
- L. Sario and M. Nakai, Classification theory of Riemann surfaces, Die Grundlehren der mathematischen Wissenschaften, Band 164, Springer-Verlag, New York-Berlin, 1970. MR 0264064, DOI 10.1007/978-3-642-48269-4
- Chiung-Jue Sung, Luen-Fai Tam, and Jiaping Wang, Spaces of harmonic functions, J. London Math. Soc. (2) 61 (2000), no. 3, 789–806. MR 1766105, DOI 10.1112/S0024610700008759
- Peter Tolksdorf, Regularity for a more general class of quasilinear elliptic equations, J. Differential Equations 51 (1984), no. 1, 126–150. MR 727034, DOI 10.1016/0022-0396(84)90105-0
- Daniele Valtorta, Reverse Khas’minskii condition, Math. Z. 270 (2012), no. 1-2, 165–177. MR 2875827, DOI 10.1007/s00209-010-0790-6
- Daniele Valtorta and Giona Veronelli, Stokes’ theorem, volume growth and parabolicity, Tohoku Math. J. (2) 63 (2011), no. 3, 397–412. MR 2851103, DOI 10.2748/tmj/1318338948
Additional Information
- Luciano Mari
- Affiliation: Dipartimento di Matematica, Università degli studi di Milano, via Saldini 50, 20133 Milano, Italy
- Email: luciano.mari@unimi.it, lucio.mari@libero.it
- Daniele Valtorta
- Affiliation: Dipartimento di Matematica, Università degli studi di Milano, via Saldini 50, 20133 Milano, Italy
- MR Author ID: 956785
- Email: danielevaltorta@gmail.com
- Received by editor(s): July 21, 2011
- Published electronically: February 28, 2013
- © Copyright 2013
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 365 (2013), 4699-4727
- MSC (2010): Primary 31C12; Secondary 35B53, 58J65, 58J05
- DOI: https://doi.org/10.1090/S0002-9947-2013-05765-0
- MathSciNet review: 3066769
Dedicated: Sui quisque laplaciani faber