## Resolvent at low energy III: The spectral measure

HTML articles powered by AMS MathViewer

- by Colin Guillarmou, Andrew Hassell and Adam Sikora PDF
- Trans. Amer. Math. Soc.
**365**(2013), 6103-6148 Request permission

## Abstract:

Let $M^\circ$ be a complete noncompact manifold and $g$ an asymptotically conic Riemaniann metric on $M^\circ$, in the sense that $M^\circ$ compactifies to a manifold with boundary $M$ in such a way that $g$ becomes a scattering metric on $M$. Let $\Delta$ be the positive Laplacian associated to $g$, and $P = \Delta + V$, where $V$ is a potential function obeying certain conditions. We analyze the asymptotics of the spectral measure $dE(\lambda ) = (\lambda /\pi i) \big ( R(\lambda +i0) - R(\lambda - i0) \big )$ of $P_+^{1/2}$, where $R(\lambda ) = (P - \lambda ^2)^{-1}$, as $\lambda \to 0$, in a manner similar to that done by the second author and Vasy (2001) and by the first two authors (2008, 2009). The main result is that the spectral measure has a simple, ‘conormal-Legendrian’ singularity structure on a space which was introduced in the 2008 work of the first two authors and is obtained from $M^2 \times [0, \lambda _0)$ by blowing up a certain number of boundary faces. We use this to deduce results about the asymptotics of the wave solution operators $\cos (t \sqrt {P_+})$ and $\sin (t \sqrt {P_+})/\sqrt {P_+}$, and the Schrödinger propagator $e^{itP_+}$, as $t \to \infty$. In particular, we prove the analogue of Price’s law for odd-dimensional asymptotically conic manifolds.

In future articles, this result on the spectral measure will be used to (i) prove restriction and spectral multiplier estimates on asymptotically conic manifolds, and (ii) prove long-time dispersion and Strichartz estimates for solutions of the Schrödinger equation on $M$, provided $M$ is nontrapping.

## References

- Milton Abramowitz and Irene A. Stegun,
*Handbook of mathematical functions with formulas, graphs, and mathematical tables*, National Bureau of Standards Applied Mathematics Series, No. 55, U. S. Government Printing Office, Washington, D.C., 1964. For sale by the Superintendent of Documents. MR**0167642** - Jean-François Bony and Dietrich Häfner,
*Decay and non-decay of the local energy for the wave equation on the de Sitter-Schwarzschild metric*, Comm. Math. Phys.**282**(2008), no. 3, 697–719. MR**2426141**, DOI 10.1007/s00220-008-0553-y - Jean-François Bony and Dietrich Häfner,
*The semilinear wave equation on asymptotically Euclidean manifolds*, Comm. Partial Differential Equations**35**(2010), no. 1, 23–67. MR**2748617**, DOI 10.1080/03605300903396601 - Jean-François Bony and Dietrich Häfner,
*Low frequency resolvent estimates for long range perturbations of the Euclidean Laplacian*, Math. Res. Lett.**17**(2010), no. 2, 303–308. MR**2644377**, DOI 10.4310/MRL.2010.v17.n2.a9 - J.-F. Bony, D. Häfner,
*Local energy decay for several evolution equations on asymptotically euclidean manifolds*, arXiv:1008.2357. - Jean-Marc Bouclet,
*Low energy behaviour of powers of the resolvent of long range perturbations of the Laplacian*, The AMSI-ANU Workshop on Spectral Theory and Harmonic Analysis, Proc. Centre Math. Appl. Austral. Nat. Univ., vol. 44, Austral. Nat. Univ., Canberra, 2010, pp. 115–127. MR**2655387** - Jean-Marc Bouclet,
*Low frequency estimates and local energy decay for asymptotically Euclidean Laplacians*, Comm. Partial Differential Equations**36**(2011), no. 7, 1239–1286. MR**2810587**, DOI 10.1080/03605302.2011.558553 - Jochen Brüning and Robert Seeley,
*The resolvent expansion for second order regular singular operators*, J. Funct. Anal.**73**(1987), no. 2, 369–429. MR**899656**, DOI 10.1016/0022-1236(87)90073-5 - Constantine J. Callias,
*The heat equation with singular coefficients. I. Operators of the form $-d^{2}/dx^{2}+\kappa /x^{2}$ in dimension $1$*, Comm. Math. Phys.**88**(1983), no. 3, 357–385. MR**701923**, DOI 10.1007/BF01213214 - Jeff Cheeger and Michael Taylor,
*On the diffraction of waves by conical singularities. I*, Comm. Pure Appl. Math.**35**(1982), no. 3, 275–331. MR**649347**, DOI 10.1002/cpa.3160350302 - Roland Donninger, Wilhelm Schlag, and Avy Soffer,
*A proof of Price’s law on Schwarzschild black hole manifolds for all angular momenta*, Adv. Math.**226**(2011), no. 1, 484–540. MR**2735767**, DOI 10.1016/j.aim.2010.06.026 - Roland Donninger, Wilhelm Schlag, and Avy Soffer,
*On pointwise decay of linear waves on a Schwarzschild black hole background*, Comm. Math. Phys.**309**(2012), no. 1, 51–86. MR**2864787**, DOI 10.1007/s00220-011-1393-8 - Colin Guillarmou and Andrew Hassell,
*Resolvent at low energy and Riesz transform for Schrödinger operators on asymptotically conic manifolds. I*, Math. Ann.**341**(2008), no. 4, 859–896. MR**2407330**, DOI 10.1007/s00208-008-0216-5 - Colin Guillarmou and Andrew Hassell,
*Resolvent at low energy and Riesz transform for Schrödinger operators on asymptotically conic manifolds. II*, Ann. Inst. Fourier (Grenoble)**59**(2009), no. 4, 1553–1610 (English, with English and French summaries). MR**2566968**, DOI 10.5802/aif.2471 - C. Guillarmou, A. Hassell, A. Sikora,
*Restriction and spectral multiplier theorems on asymptotically conic manifolds*, arXiv:1012.3780. - Andrew Hassell, Rafe Mazzeo, and Richard B. Melrose,
*Analytic surgery and the accumulation of eigenvalues*, Comm. Anal. Geom.**3**(1995), no. 1-2, 115–222. MR**1362650**, DOI 10.4310/CAG.1995.v3.n1.a4 - Andrew Hassell and András Vasy,
*The spectral projections and the resolvent for scattering metrics*, J. Anal. Math.**79**(1999), 241–298. MR**1749314**, DOI 10.1007/BF02788243 - A. Hassell and A. Vasy,
*The resolvent for Laplace-type operators on asymptotically conic spaces*, Ann. Inst. Fourier (Grenoble)**51**(2001), no. 5, 1299–1346 (English, with English and French summaries). MR**1860667**, DOI 10.5802/aif.1856 - Andrew Hassell and Jared Wunsch,
*The semiclassical resolvent and the propagator for non-trapping scattering metrics*, Adv. Math.**217**(2008), no. 2, 586–682. MR**2370277**, DOI 10.1016/j.aim.2007.08.006 - Lars Hörmander,
*The analysis of linear partial differential operators. I*, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 256, Springer-Verlag, Berlin, 1983. Distribution theory and Fourier analysis. MR**717035**, DOI 10.1007/978-3-642-96750-4 - Arne Jensen and Tosio Kato,
*Spectral properties of Schrödinger operators and time-decay of the wave functions*, Duke Math. J.**46**(1979), no. 3, 583–611. MR**544248** - Hong-Quan Li,
*La transformation de Riesz sur les variétés coniques*, J. Funct. Anal.**168**(1999), no. 1, 145–238 (French). MR**1717835**, DOI 10.1006/jfan.1999.3464 - Richard B. Melrose,
*The Atiyah-Patodi-Singer index theorem*, Research Notes in Mathematics, vol. 4, A K Peters, Ltd., Wellesley, MA, 1993. MR**1348401**, DOI 10.1016/0377-0257(93)80040-i - Richard B. Melrose,
*Pseudodifferential operators, corners and singular limits*, Proceedings of the International Congress of Mathematicians, Vol. I, II (Kyoto, 1990) Math. Soc. Japan, Tokyo, 1991, pp. 217–234. MR**1159214** - R.B. Melrose, A. Sa Barreto,
*Zero energy limit for scattering manifolds*, unpublished note. - Richard B. Melrose,
*Spectral and scattering theory for the Laplacian on asymptotically Euclidian spaces*, Spectral and scattering theory (Sanda, 1992) Lecture Notes in Pure and Appl. Math., vol. 161, Dekker, New York, 1994, pp. 85–130. MR**1291640** - Richard B. Melrose,
*Calculus of conormal distributions on manifolds with corners*, Internat. Math. Res. Notices**3**(1992), 51–61. MR**1154213**, DOI 10.1155/S1073792892000060 - Richard Melrose and Maciej Zworski,
*Scattering metrics and geodesic flow at infinity*, Invent. Math.**124**(1996), no. 1-3, 389–436. MR**1369423**, DOI 10.1007/s002220050058 - Minoru Murata,
*Asymptotic expansions in time for solutions of Schrödinger-type equations*, J. Funct. Anal.**49**(1982), no. 1, 10–56. MR**680855**, DOI 10.1016/0022-1236(82)90084-2 - Richard H. Price,
*Nonspherical perturbations of relativistic gravitational collapse. II. Integer-spin, zero-rest-mass fields*, Phys. Rev. D (3)**5**(1972), 2439–2454. MR**376104**, DOI 10.1103/PhysRevD.5.2439 - Richard H. Price and Lior M. Burko,
*Late time tails from momentarily stationary, compact initial data in Schwarzschild spacetimes*, Phys. Rev. D (3)**70**(2004), no. 8, 084039, 6. MR**2117134**, DOI 10.1103/PhysRevD.70.084039 - Antônio Sá Barreto and Maciej Zworski,
*Distribution of resonances for spherical black holes*, Math. Res. Lett.**4**(1997), no. 1, 103–121. MR**1432814**, DOI 10.4310/MRL.1997.v4.n1.a10 - D. Tataru,
*Local decay of waves on asymptotically flat stationary space-times*, arXiv:0910.5290; Amer. J. Math., to appear. - András Vasy and Jared Wunsch,
*Positive commutators at the bottom of the spectrum*, J. Funct. Anal.**259**(2010), no. 2, 503–523. MR**2644111**, DOI 10.1016/j.jfa.2010.04.012 - Xue Ping Wang,
*Asymptotic expansion in time of the Schrödinger group on conical manifolds*, Ann. Inst. Fourier (Grenoble)**56**(2006), no. 6, 1903–1945 (English, with English and French summaries). MR**2282678**, DOI 10.5802/aif.2230 - Dmitri Yafaev,
*Scattering theory: some old and new problems*, Lecture Notes in Mathematics, vol. 1735, Springer-Verlag, Berlin, 2000. MR**1774673**, DOI 10.1007/BFb0105531

## Additional Information

**Colin Guillarmou**- Affiliation: DMA, U.M.R. 8553 CNRS, Ecole Normale Supérieure, 45 rue d’Ulm, F 75230 Paris cedex 05, France
- MR Author ID: 754486
- Email: cguillar@dma.ens.fr
**Andrew Hassell**- Affiliation: Department of Mathematics, Australian National University, Canberra ACT 0200, Australia
- MR Author ID: 332964
- Email: Andrew.Hassell@anu.edu.au
**Adam Sikora**- Affiliation: Department of Mathematics, Australian National University, Canberra ACT 0200, Australia — and — Department of Mathematics, Macquarie University, NSW 2109, Australia
- MR Author ID: 292432
- Email: sikora@mq.edu.au
- Received by editor(s): September 16, 2010
- Received by editor(s) in revised form: April 4, 2012
- Published electronically: April 2, 2013
- Additional Notes: The second and third authors were supported by Australian Research Council Discovery grants DP0771826 and DP1095448 and the second author by a Future Fellowship. The first author was partially supported by ANR grant ANR-09-JCJC-0099-01 and by the PICS-CNRS Progress in Geometric Analysis and Applications, and thanks the math department of ANU for its hospitality. The first author also thanks M.Tohaneanu for useful discussions.
- © Copyright 2013 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**365**(2013), 6103-6148 - MSC (2010): Primary 35P25, 47A40, 58J50
- DOI: https://doi.org/10.1090/S0002-9947-2013-05849-7
- MathSciNet review: 3091277