Quantum dimensions and quantum Galois theory
HTML articles powered by AMS MathViewer
- by Chongying Dong, Xiangyu Jiao and Feng Xu PDF
- Trans. Amer. Math. Soc. 365 (2013), 6441-6469 Request permission
Abstract:
The quantum dimensions of modules for vertex operator algebras are defined and their properties are discussed. The possible values of the quantum dimensions are obtained for rational vertex operator algebras. A criterion for simple currents of a rational vertex operator algebra is given and a full Galois theory for rational vertex operator algebras is established using the quantum dimensions.References
- Toshiyuki Abe, Geoffrey Buhl, and Chongying Dong, Rationality, regularity, and $C_2$-cofiniteness, Trans. Amer. Math. Soc. 356 (2004), no. 8, 3391–3402. MR 2052955, DOI 10.1090/S0002-9947-03-03413-5
- A. A. Belavin, A. M. Polyakov, and A. B. Zamolodchikov, Infinite conformal symmetry in two-dimensional quantum field theory, Nuclear Phys. B 241 (1984), no. 2, 333–380. MR 757857, DOI 10.1016/0550-3213(84)90052-X
- Andries E. Brouwer and Willem H. Haemers, Spectra of graphs, Universitext, Springer, New York, 2012. MR 2882891, DOI 10.1007/978-1-4614-1939-6
- A. Cappelli, C. Itzykson, and J.-B. Zuber, Modular invariant partition functions in two dimensions, Nuclear Phys. B 280 (1987), no. 3, 445–465. MR 881119, DOI 10.1016/0550-3213(87)90155-6
- A. Cappelli, C. Itzykson, and J.-B. Zuber, The $\textrm {A}$-$\textrm {D}$-$\textrm {E}$ classification of minimal and $A^{(1)}_1$ conformal invariant theories, Comm. Math. Phys. 113 (1987), no. 1, 1–26. MR 918402
- R. Coquereaux, Global dimensions for Lie groups at level $k$ and their conformally exceptional quantum subgroups, Rev. Un. Mat. Argentina 51 (2010), no. 2, 17–42. MR 2840162
- Robbert Dijkgraaf, Cumrun Vafa, Erik Verlinde, and Herman Verlinde, The operator algebra of orbifold models, Comm. Math. Phys. 123 (1989), no. 3, 485–526. MR 1003430
- Chongying Dong, Vertex algebras associated with even lattices, J. Algebra 161 (1993), no. 1, 245–265. MR 1245855, DOI 10.1006/jabr.1993.1217
- Chongying Dong and Robert L. Griess Jr., Rank one lattice type vertex operator algebras and their automorphism groups, J. Algebra 208 (1998), no. 1, 262–275. MR 1644007, DOI 10.1006/jabr.1998.7498
- Chongying Dong, Robert L. Griess Jr., and Gerald Höhn, Framed vertex operator algebras, codes and the Moonshine module, Comm. Math. Phys. 193 (1998), no. 2, 407–448. MR 1618135, DOI 10.1007/s002200050335
- Chongying Dong and Cuipo Jiang, A characterization of vertex operator algebra $L(\frac 12,0)\otimes L(\frac 12,0)$, Comm. Math. Phys. 296 (2010), no. 1, 69–88. MR 2606628, DOI 10.1007/s00220-009-0964-4
- Chongying Dong and James Lepowsky, Generalized vertex algebras and relative vertex operators, Progress in Mathematics, vol. 112, Birkhäuser Boston, Inc., Boston, MA, 1993. MR 1233387, DOI 10.1007/978-1-4612-0353-7
- Chongying Dong, Haisheng Li, and Geoffrey Mason, Compact automorphism groups of vertex operator algebras, Internat. Math. Res. Notices 18 (1996), 913–921. MR 1420556, DOI 10.1155/S1073792896000566
- Chongying Dong, Haisheng Li, and Geoffrey Mason, Regularity of rational vertex operator algebras, Adv. Math. 132 (1997), no. 1, 148–166. MR 1488241, DOI 10.1006/aima.1997.1681
- Chongying Dong, Haisheng Li, and Geoffrey Mason, Twisted representations of vertex operator algebras, Math. Ann. 310 (1998), no. 3, 571–600. MR 1615132, DOI 10.1007/s002080050161
- Chongying Dong, Haisheng Li, and Geoffrey Mason, Vertex operator algebras and associative algebras, J. Algebra 206 (1998), no. 1, 67–96. MR 1637252, DOI 10.1006/jabr.1998.7425
- Chongying Dong, Haisheng Li, and Geoffrey Mason, Modular-invariance of trace functions in orbifold theory and generalized Moonshine, Comm. Math. Phys. 214 (2000), no. 1, 1–56. MR 1794264, DOI 10.1007/s002200000242
- Chongying Dong and Geoffrey Mason, On quantum Galois theory, Duke Math. J. 86 (1997), no. 2, 305–321. MR 1430435, DOI 10.1215/S0012-7094-97-08609-9
- Chongying Dong and Geoffrey Mason, Quantum Galois theory for compact Lie groups, J. Algebra 214 (1999), no. 1, 92–102. MR 1684904, DOI 10.1006/jabr.1998.7694
- Chongying Dong and Geoffrey Mason, Rational vertex operator algebras and the effective central charge, Int. Math. Res. Not. 56 (2004), 2989–3008. MR 2097833, DOI 10.1155/S1073792804140968
- Chongying Dong, Geoffrey Mason, and Yongchang Zhu, Discrete series of the Virasoro algebra and the moonshine module, Algebraic groups and their generalizations: quantum and infinite-dimensional methods (University Park, PA, 1991) Proc. Sympos. Pure Math., vol. 56, Amer. Math. Soc., Providence, RI, 1994, pp. 295–316. MR 1278737
- Chongying Dong and Nina Yu, $\Bbb {Z}$-graded weak modules and regularity, Comm. Math. Phys. 316 (2012), no. 1, 269–277. MR 2989460, DOI 10.1007/s00220-012-1543-7
- Pavel Etingof, Dmitri Nikshych, and Viktor Ostrik, On fusion categories, Ann. of Math. (2) 162 (2005), no. 2, 581–642. MR 2183279, DOI 10.4007/annals.2005.162.581
- Philippe Di Francesco, Pierre Mathieu, and David Sénéchal, Conformal field theory, Graduate Texts in Contemporary Physics, Springer-Verlag, New York, 1997. MR 1424041, DOI 10.1007/978-1-4612-2256-9
- Igor B. Frenkel, Yi-Zhi Huang, and James Lepowsky, On axiomatic approaches to vertex operator algebras and modules, Mem. Amer. Math. Soc. 104 (1993), no. 494, viii+64. MR 1142494, DOI 10.1090/memo/0494
- Igor Frenkel, James Lepowsky, and Arne Meurman, Vertex operator algebras and the Monster, Pure and Applied Mathematics, vol. 134, Academic Press, Inc., Boston, MA, 1988. MR 996026
- Igor B. Frenkel and Yongchang Zhu, Vertex operator algebras associated to representations of affine and Virasoro algebras, Duke Math. J. 66 (1992), no. 1, 123–168. MR 1159433, DOI 10.1215/S0012-7094-92-06604-X
- Daniele Guido and Roberto Longo, An algebraic spin and statistics theorem, Comm. Math. Phys. 172 (1995), no. 3, 517–533. MR 1354258
- Akihide Hanaki, Masahiko Miyamoto, and Daisuke Tambara, Quantum Galois theory for finite groups, Duke Math. J. 97 (1999), no. 3, 541–544. MR 1682988, DOI 10.1215/S0012-7094-99-09720-X
- Yi-Zhi Huang, Vertex operator algebras and the Verlinde conjecture, Commun. Contemp. Math. 10 (2008), no. 1, 103–154. MR 2387861, DOI 10.1142/S0219199708002727
- Yi-Zhi Huang and James Lepowsky, Toward a theory of tensor products for representations of a vertex operator algebra, Proceedings of the XXth International Conference on Differential Geometric Methods in Theoretical Physics, Vol. 1, 2 (New York, 1991) World Sci. Publ., River Edge, NJ, 1992, pp. 344–354. MR 1225125
- Yi-Zhi Huang and James Lepowsky, Tensor products of modules for a vertex operator algebra and vertex tensor categories, Lie theory and geometry, Progr. Math., vol. 123, Birkhäuser Boston, Boston, MA, 1994, pp. 349–383. MR 1327541, DOI 10.1007/978-1-4612-0261-5_{1}3
- Y.-Z. Huang and J. Lepowsky, A theory of tensor products for module categories for a vertex operator algebra. I, II, Selecta Math. (N.S.) 1 (1995), no. 4, 699–756, 757–786. MR 1383584, DOI 10.1007/BF01587908
- Yi-Zhi Huang and James Lepowsky, A theory of tensor products for module categories for a vertex operator algebra. III, J. Pure Appl. Algebra 100 (1995), no. 1-3, 141–171. MR 1344848, DOI 10.1016/0022-4049(95)00049-3
- C. Itzykson and J.-B. Zuber, Two-dimensional conformal invariant theories on a torus, Nuclear Phys. B 275 (1986), no. 4, 580–616. MR 865230, DOI 10.1016/0550-3213(86)90576-6
- V. F. R. Jones, Index for subfactors, Invent. Math. 72 (1983), no. 1, 1–25. MR 696688, DOI 10.1007/BF01389127
- Victor G. Kac, Infinite-dimensional Lie algebras, 3rd ed., Cambridge University Press, Cambridge, 1990. MR 1104219, DOI 10.1017/CBO9780511626234
- V. G. Kac and A. K. Raina, Bombay lectures on highest weight representations of infinite-dimensional Lie algebras, Advanced Series in Mathematical Physics, vol. 2, World Scientific Publishing Co., Inc., Teaneck, NJ, 1987. MR 1021978
- Michio Kaku, Strings, conformal fields, and topology, Graduate Texts in Contemporary Physics, Springer-Verlag, New York, 1991. An introduction. MR 1102894, DOI 10.1007/978-1-4684-0397-8
- Yasuyuki Kawahigashi, Roberto Longo, and Michael Müger, Multi-interval subfactors and modularity of representations in conformal field theory, Comm. Math. Phys. 219 (2001), no. 3, 631–669. MR 1838752, DOI 10.1007/PL00005565
- P. W. H. Lemmens and J. J. Seidel, Equiangular lines, J. Algebra 24 (1973), 494–512. MR 307969, DOI 10.1016/0021-8693(73)90123-3
- Hai-Sheng Li, Local systems of vertex operators, vertex superalgebras and modules, J. Pure Appl. Algebra 109 (1996), no. 2, 143–195. MR 1387738, DOI 10.1016/0022-4049(95)00079-8
- Haisheng Li, An analogue of the Hom functor and a generalized nuclear democracy theorem, Duke Math. J. 93 (1998), no. 1, 73–114. MR 1620083, DOI 10.1215/S0012-7094-98-09303-6
- Antun Milas, Fusion rings for degenerate minimal models, J. Algebra 254 (2002), no. 2, 300–335. MR 1933872, DOI 10.1016/S0021-8693(02)00096-0
- Gregory Moore and Nathan Seiberg, Classical and quantum conformal field theory, Comm. Math. Phys. 123 (1989), no. 2, 177–254. MR 1002038
- Mihai Pimsner and Sorin Popa, Entropy and index for subfactors, Ann. Sci. École Norm. Sup. (4) 19 (1986), no. 1, 57–106. MR 860811
- John H. Smith, Some properties of the spectrum of a graph, Combinatorial Structures and their Applications (Proc. Calgary Internat. Conf., Calgary, Alta., 1969) Gordon and Breach, New York, 1970, pp. 403–406. MR 0266799
- Erik Verlinde, Fusion rules and modular transformations in $2$D conformal field theory, Nuclear Phys. B 300 (1988), no. 3, 360–376. MR 954762, DOI 10.1016/0550-3213(88)90603-7
- Weiqiang Wang, Rationality of Virasoro vertex operator algebras, Internat. Math. Res. Notices 7 (1993), 197–211. MR 1230296, DOI 10.1155/S1073792893000212
- Antony Wassermann, Operator algebras and conformal field theory. III. Fusion of positive energy representations of $\textrm {LSU}(N)$ using bounded operators, Invent. Math. 133 (1998), no. 3, 467–538. MR 1645078, DOI 10.1007/s002220050253
- Feng Xu, Algebraic orbifold conformal field theories, Proc. Natl. Acad. Sci. USA 97 (2000), no. 26, 14069–14073. MR 1806798, DOI 10.1073/pnas.260375597
- Xiaoping Xu, Introduction to vertex operator superalgebras and their modules, Mathematics and its Applications, vol. 456, Kluwer Academic Publishers, Dordrecht, 1998. MR 1656671, DOI 10.1007/978-94-015-9097-6
- Yongchang Zhu, Modular invariance of characters of vertex operator algebras, J. Amer. Math. Soc. 9 (1996), no. 1, 237–302. MR 1317233, DOI 10.1090/S0894-0347-96-00182-8
Additional Information
- Chongying Dong
- Affiliation: Department of Mathematics, University of California, Santa Cruz, California 95064
- MR Author ID: 316207
- Xiangyu Jiao
- Affiliation: Department of Mathematics, University of California, Santa Cruz, California 95064
- MR Author ID: 1036937
- Feng Xu
- Affiliation: Department of Mathematics, University of California, Riverside, California 92521
- MR Author ID: 358033
- Received by editor(s): January 12, 2012
- Received by editor(s) in revised form: April 24, 2012
- Published electronically: August 20, 2013
- Additional Notes: The first author was supported by NSF grants and a faculty research fund from the University of California at Santa Cruz
The third author was supported by an NSF grant and a faculty research fund from the University of California at Riverside. - © Copyright 2013
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 365 (2013), 6441-6469
- MSC (2010): Primary 17B69
- DOI: https://doi.org/10.1090/S0002-9947-2013-05863-1
- MathSciNet review: 3105758