On the quantization of spherical nilpotent orbits
HTML articles powered by AMS MathViewer
- by Liang Yang PDF
- Trans. Amer. Math. Soc. 365 (2013), 6499-6515 Request permission
Abstract:
Let $G$ be the real symplectic group $Sp(2n,\mathbb {R})$. This paper determines the global sections of certain line bundles over the spherical nilpotent $K_{\mathbb {C}}$-orbit $\mathcal {O}$. As a consequence, Vogan’s conjecture for these orbits is verified. The conjecture holds that there exists a unique unitary $(\mathfrak {g},K)$-module structure on the space of the algebraic global sections of the line bundle associated to the admissible datum, provided that the boundary $\partial \overline {\mathcal {O}}$ has complex codimension at least $2$ in $\overline {\mathcal {O}}$. Similar results are obtained for the metaplectic twofold cover $Mp(2n,\mathbb {R})$ of $Sp(2n,\mathbb {R})$.References
- Jeffrey Adams, Jing-Song Huang, and David A. Vogan Jr., Functions on the model orbit in $E_8$, Represent. Theory 2 (1998), 224–263. MR 1628031, DOI 10.1090/S1088-4165-98-00048-X
- Birne Binegar, On a class of multiplicity-free nilpotent $K_{\Bbb C}$-orbits, J. Math. Kyoto Univ. 47 (2007), no. 4, 735–766. MR 2413063, DOI 10.1215/kjm/1250692287
- David H. Collingwood and William M. McGovern, Nilpotent orbits in semisimple Lie algebras, Van Nostrand Reinhold Mathematics Series, Van Nostrand Reinhold Co., New York, 1993. MR 1251060
- Roger Howe, Transcending classical invariant theory, J. Amer. Math. Soc. 2 (1989), no. 3, 535–552. MR 985172, DOI 10.1090/S0894-0347-1989-0985172-6
- Roger Howe and Chen-Bo Zhu, Eigendistributions for orthogonal groups and representations of symplectic groups, J. Reine Angew. Math. 545 (2002), 121–166. MR 1896100, DOI 10.1515/crll.2002.031
- Jing-Song Huang and Jian-Shu Li, Unipotent representations attached to spherical nilpotent orbits, Amer. J. Math. 121 (1999), no. 3, 497–517. MR 1738410
- M. Kashiwara and M. Vergne, On the Segal-Shale-Weil representations and harmonic polynomials, Invent. Math. 44 (1978), no. 1, 1–47. MR 463359, DOI 10.1007/BF01389900
- Anthony W. Knapp, Representation theory of semisimple groups, Princeton Mathematical Series, vol. 36, Princeton University Press, Princeton, NJ, 1986. An overview based on examples. MR 855239, DOI 10.1515/9781400883974
- Anthony W. Knapp and David A. Vogan Jr., Cohomological induction and unitary representations, Princeton Mathematical Series, vol. 45, Princeton University Press, Princeton, NJ, 1995. MR 1330919, DOI 10.1515/9781400883936
- Donald R. King, Classification of spherical nilpotent orbits in complex symmetric space, J. Lie Theory 14 (2004), no. 2, 339–370. MR 2066860
- Bertram Kostant, Lie algebra cohomology and the generalized Borel-Weil theorem, Ann. of Math. (2) 74 (1961), 329–387. MR 142696, DOI 10.2307/1970237
- Stephen S. Kudla and Stephen Rallis, Degenerate principal series and invariant distributions, Israel J. Math. 69 (1990), no. 1, 25–45. MR 1046171, DOI 10.1007/BF02764727
- Soo Teck Lee and Chen-Bo Zhu, Degenerate principal series and local theta correspondence, Trans. Amer. Math. Soc. 350 (1998), no. 12, 5017–5046. MR 1443883, DOI 10.1090/S0002-9947-98-02036-4
- Jian-Shu Li, Singular unitary representations of classical groups, Invent. Math. 97 (1989), no. 2, 237–255. MR 1001840, DOI 10.1007/BF01389041
- Kyo Nishiyama, Hiroyuki Ochiai, Kenji Taniguchi, Hiroshi Yamashita, and Shohei Kato, Nilpotent orbits, associated cycles and Whittaker models for highest weight representations, Société Mathématique de France, Paris, 2001. Astérisque No. 273 (2001) (2001). MR 1845713
- Kyo Nishiyama and Chen-Bo Zhu, Theta lifting of holomorphic discrete series: the case of $\textrm {U}(n,n)\times \textrm {U}(p,q)$, Trans. Amer. Math. Soc. 353 (2001), no. 8, 3327–3345. MR 1828608, DOI 10.1090/S0002-9947-01-02830-6
- Kyo Nishiyama and Chen-Bo Zhu, Theta lifting of unitary lowest weight modules and their associated cycles, Duke Math. J. 125 (2004), no. 3, 415–465. MR 2166751, DOI 10.1215/S0012-7094-04-12531-X
- Tomasz Przebinda, Characters, dual pairs, and unitary representations, Duke Math. J. 69 (1993), no. 3, 547–592. MR 1208811, DOI 10.1215/S0012-7094-93-06923-2
- Wilfried Schmid and Kari Vilonen, Characteristic cycles and wave front cycles of representations of reductive Lie groups, Ann. of Math. (2) 151 (2000), no. 3, 1071–1118. MR 1779564, DOI 10.2307/121129
- David A. Vogan Jr., Associated varieties and unipotent representations, Harmonic analysis on reductive groups (Brunswick, ME, 1989) Progr. Math., vol. 101, Birkhäuser Boston, Boston, MA, 1991, pp. 315–388. MR 1168491
- David A. Vogan Jr., Irreducibility of discrete series representations for semisimple symmetric spaces, Representations of Lie groups, Kyoto, Hiroshima, 1986, Adv. Stud. Pure Math., vol. 14, Academic Press, Boston, MA, 1988, pp. 191–221. MR 1039838, DOI 10.2969/aspm/01410191
- David A. Vogan Jr., Representations of reductive Lie groups, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986) Amer. Math. Soc., Providence, RI, 1987, pp. 245–266. MR 934226
- David A. Vogan Jr., The method of coadjoint orbits for real reductive groups, Representation theory of Lie groups (Park City, UT, 1998) IAS/Park City Math. Ser., vol. 8, Amer. Math. Soc., Providence, RI, 2000, pp. 179–238. MR 1737729, DOI 10.1090/pcms/008/05
- Chen-bo Zhu, Invariant distributions of classical groups, Duke Math. J. 65 (1992), no. 1, 85–119. MR 1148986, DOI 10.1215/S0012-7094-92-06504-5
- Chen-Bo Zhu and Jing-Song Huang, On certain small representations of indefinite orthogonal groups, Represent. Theory 1 (1997), 190–206. MR 1457244, DOI 10.1090/S1088-4165-97-00031-9
Additional Information
- Liang Yang
- Affiliation: Department of Mathematics, Sichuan University, Chengdu, 610064, People’s Republic of China
- Email: malyang@scu.edu.cn
- Received by editor(s): November 9, 2011
- Received by editor(s) in revised form: May 20, 2012
- Published electronically: April 25, 2013
- Additional Notes: Part of this work was included in the author’s Ph.D. thesis
- © Copyright 2013
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 365 (2013), 6499-6515
- MSC (2010): Primary 20G15, 22E46
- DOI: https://doi.org/10.1090/S0002-9947-2013-05925-9
- MathSciNet review: 3105760