Firmly nonexpansive mappings in classes of geodesic spaces
HTML articles powered by AMS MathViewer
- by David Ariza-Ruiz, Laurenţiu Leuştean and Genaro López-Acedo PDF
- Trans. Amer. Math. Soc. 366 (2014), 4299-4322 Request permission
Abstract:
Firmly nonexpansive mappings play an important role in metric fixed point theory and optimization due to their correspondence with maximal monotone operators. In this paper we do a thorough study of fixed point theory and the asymptotic behaviour of Picard iterates of these mappings in different classes of geodesic spaces, such as (uniformly convex) $W$-hyperbolic spaces, Busemann spaces and CAT(0) spaces. Furthermore, we apply methods of proof mining to obtain effective rates of asymptotic regularity for the Picard iterations.References
- Miroslav Bačák, The proximal point algorithm in metric spaces, Israel J. Math. 194 (2013), no. 2, 689–701. MR 3047087, DOI 10.1007/s11856-012-0091-3
- Heinz H. Bauschke, Sarah M. Moffat, and Xianfu Wang, Firmly nonexpansive mappings and maximally monotone operators: correspondence and duality, Set-Valued Var. Anal. 20 (2012), no. 1, 131–153. MR 2886508, DOI 10.1007/s11228-011-0187-7
- H. Brezis, M. G. Crandall, and A. Pazy, Perturbations of nonlinear maximal monotone sets in Banach space, Comm. Pure Appl. Math. 23 (1970), 123–144. MR 257805, DOI 10.1002/cpa.3160230107
- Martin R. Bridson and André Haefliger, Metric spaces of non-positive curvature, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 319, Springer-Verlag, Berlin, 1999. MR 1744486, DOI 10.1007/978-3-662-12494-9
- Felix E. Browder, Convergence theorems for sequences of nonlinear operators in Banach spaces, Math. Z. 100 (1967), 201–225. MR 215141, DOI 10.1007/BF01109805
- Ronald E. Bruck Jr., Nonexpansive projections on subsets of Banach spaces, Pacific J. Math. 47 (1973), 341–355. MR 341223
- Ronald E. Bruck and Simeon Reich, Nonexpansive projections and resolvents of accretive operators in Banach spaces, Houston J. Math. 3 (1977), no. 4, 459–470. MR 470761
- F. Bruhat and J. Tits, Groupes réductifs sur un corps local, Inst. Hautes Études Sci. Publ. Math. 41 (1972), 5–251 (French). MR 327923
- Herbert Busemann, Spaces with non-positive curvature, Acta Math. 80 (1948), 259–310. MR 29531, DOI 10.1007/BF02393651
- Herbert Busemann, The geometry of geodesics, Academic Press, Inc., New York, N.Y., 1955. MR 0075623
- Michael Edelstein, The construction of an asymptotic center with a fixed-point property, Bull. Amer. Math. Soc. 78 (1972), 206–208. MR 291917, DOI 10.1090/S0002-9904-1972-12918-5
- Michael Edelstein, Fixed point theorems in uniformly convex Banach spaces, Proc. Amer. Math. Soc. 44 (1974), 369–374. MR 358451, DOI 10.1090/S0002-9939-1974-0358451-4
- Rafa Espínola and Aurora Fernández-León, $\textrm {CAT}(k)$-spaces, weak convergence and fixed points, J. Math. Anal. Appl. 353 (2009), no. 1, 410–427. MR 2508878, DOI 10.1016/j.jmaa.2008.12.015
- M. Fekete, Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten, Math. Z. 17 (1923), no. 1, 228–249 (German). MR 1544613, DOI 10.1007/BF01504345
- O. P. Ferreira, L. R. Lucambio Pérez, and S. Z. Németh, Singularities of monotone vector fields and an extragradient-type algorithm, J. Global Optim. 31 (2005), no. 1, 133–151. MR 2141129, DOI 10.1007/s10898-003-3780-y
- Jesús García-Falset and Simeon Reich, Zeroes of accretive operators and the asymptotic behavior of nonlinear semigroups, Houston J. Math. 32 (2006), no. 4, 1197–1225. MR 2268479
- Kazimierz Goebel and W. A. Kirk, Iteration processes for nonexpansive mappings, Topological methods in nonlinear functional analysis (Toronto, Ont., 1982) Contemp. Math., vol. 21, Amer. Math. Soc., Providence, RI, 1983, pp. 115–123. MR 729507, DOI 10.1090/conm/021/729507
- Kazimierz Goebel and Simeon Reich, Uniform convexity, hyperbolic geometry, and nonexpansive mappings, Monographs and Textbooks in Pure and Applied Mathematics, vol. 83, Marcel Dekker, Inc., New York, 1984. MR 744194
- Jürgen Jost, Equilibrium maps between metric spaces, Calc. Var. Partial Differential Equations 2 (1994), no. 2, 173–204. MR 1385525, DOI 10.1007/BF01191341
- Jürgen Jost, Convex functionals and generalized harmonic maps into spaces of nonpositive curvature, Comment. Math. Helv. 70 (1995), no. 4, 659–673. MR 1360608, DOI 10.1007/BF02566027
- W. A. Kirk, Krasnosel′skiĭ’s iteration process in hyperbolic space, Numer. Funct. Anal. Optim. 4 (1981/82), no. 4, 371–381. MR 673318, DOI 10.1080/01630568208816123
- W. A. Kirk and B. Panyanak, A concept of convergence in geodesic spaces, Nonlinear Anal. 68 (2008), no. 12, 3689–3696. MR 2416076, DOI 10.1016/j.na.2007.04.011
- Ulrich Kohlenbach, Uniform asymptotic regularity for Mann iterates, J. Math. Anal. Appl. 279 (2003), no. 2, 531–544. MR 1974043, DOI 10.1016/S0022-247X(03)00028-3
- Ulrich Kohlenbach, Some logical metatheorems with applications in functional analysis, Trans. Amer. Math. Soc. 357 (2005), no. 1, 89–128. MR 2098088, DOI 10.1090/S0002-9947-04-03515-9
- U. Kohlenbach, Applied proof theory: proof interpretations and their use in mathematics, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2008. MR 2445721
- U. Kohlenbach and L. Leuştean, Asymptotically nonexpansive mappings in uniformly convex hyperbolic spaces, J. Eur. Math. Soc. (JEMS) 12 (2010), no. 1, 71–92. MR 2578604, DOI 10.4171/JEMS/190
- Eva Kopecká and Simeon Reich, Asymptotic behavior of resolvents of coaccretive operators in the Hilbert ball, Nonlinear Anal. 70 (2009), no. 9, 3187–3194. MR 2503064, DOI 10.1016/j.na.2008.04.023
- Tadeusz Kuczumow, An almost convergence and its applications, Ann. Univ. Mariae Curie-Skłodowska Sect. A 32 (1978), 79–88 (1980) (English, with Russian and Polish summaries). MR 687863
- L. Leustean, A quadratic rate of asymptotic regularity for CAT(0)-spaces, J. Math. Anal. Appl. 325 (2007), no. 1, 386–399. MR 2273533, DOI 10.1016/j.jmaa.2006.01.081
- Laurenţiu Leuştean, Nonexpansive iterations in uniformly convex $W$-hyperbolic spaces, Nonlinear analysis and optimization I. Nonlinear analysis, Contemp. Math., vol. 513, Amer. Math. Soc., Providence, RI, 2010, pp. 193–210. MR 2668247, DOI 10.1090/conm/513/10084
- Chong Li, Genaro López, and Victoria Martín-Márquez, Monotone vector fields and the proximal point algorithm on Hadamard manifolds, J. Lond. Math. Soc. (2) 79 (2009), no. 3, 663–683. MR 2506692, DOI 10.1112/jlms/jdn087
- Teck Cheong Lim, Remarks on some fixed point theorems, Proc. Amer. Math. Soc. 60 (1976), 179–182 (1977). MR 423139, DOI 10.1090/S0002-9939-1976-0423139-X
- Uwe F. Mayer, Gradient flows on nonpositively curved metric spaces and harmonic maps, Comm. Anal. Geom. 6 (1998), no. 2, 199–253. MR 1651416, DOI 10.4310/CAG.1998.v6.n2.a1
- George J. Minty, Monotone (nonlinear) operators in Hilbert space, Duke Math. J. 29 (1962), 341–346. MR 169064
- Jean-Jacques Moreau, Proximité et dualité dans un espace hilbertien, Bull. Soc. Math. France 93 (1965), 273–299 (French). MR 201952
- Olavi Nevanlinna and Simeon Reich, Strong convergence of contraction semigroups and of iterative methods for accretive operators in Banach spaces, Israel J. Math. 32 (1979), no. 1, 44–58. MR 531600, DOI 10.1007/BF02761184
- Adriana Nicolae, Asymptotic behavior of averaged and firmly nonexpansive mappings in geodesic spaces, Nonlinear Anal. 87 (2013), 102–115. MR 3057039, DOI 10.1016/j.na.2013.03.018
- Athanase Papadopoulos, Metric spaces, convexity and nonpositive curvature, IRMA Lectures in Mathematics and Theoretical Physics, vol. 6, European Mathematical Society (EMS), Zürich, 2005. MR 2132506
- Simeon Reich, Extension problems for accretive sets in Banach spaces, J. Functional Analysis 26 (1977), no. 4, 378–395. MR 0477893, DOI 10.1016/0022-1236(77)90022-2
- Simeon Reich and Itai Shafrir, The asymptotic behavior of firmly nonexpansive mappings, Proc. Amer. Math. Soc. 101 (1987), no. 2, 246–250. MR 902536, DOI 10.1090/S0002-9939-1987-0902536-7
- Simeon Reich and Itai Shafrir, Nonexpansive iterations in hyperbolic spaces, Nonlinear Anal. 15 (1990), no. 6, 537–558. MR 1072312, DOI 10.1016/0362-546X(90)90058-O
- R. Tyrrell Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. Control Optim. 14 (1976), no. 5, 877–898. MR 410483, DOI 10.1137/0314056
- Ryszard Smarzewski, On firmly nonexpansive mappings, Proc. Amer. Math. Soc. 113 (1991), no. 3, 723–725. MR 1050023, DOI 10.1090/S0002-9939-1991-1050023-1
- E. N. Sosov, On analogues of weak convergence in a special metric space, Izv. Vyssh. Uchebn. Zaved. Mat. 5 (2004), 84–89 (Russian); English transl., Russian Math. (Iz. VUZ) 48 (2004), no. 5, 79–83. MR 2101682
- I. Stojkovic, Geometric approach to evolution problems in metric spaces, Ph.D. thesis, 2011, http://www.math.leidenuniv.nl/scripties/PhDThesisStojkovic.pdf.
- Wataru Takahashi, A convexity in metric space and nonexpansive mappings. I, K\B{o}dai Math. Sem. Rep. 22 (1970), 142–149. MR 267565
- Hong-Kun Xu, Strong asymptotic behavior of almost-orbits of nonlinear semigroups, Nonlinear Anal. 46 (2001), no. 1, Ser. A: Theory Methods, 135–151. MR 1845582, DOI 10.1016/S0362-546X(99)00453-8
Additional Information
- David Ariza-Ruiz
- Affiliation: Departamento Análisis Matemático, Fac. Matemáticas, Universidad de Sevilla, Apdo. 1160, 41080-Sevilla, Spain
- Email: dariza@us.es
- Laurenţiu Leuştean
- Affiliation: Simion Stoilow Institute of Mathematics of the Romanian Academy, P. O. Box 1-764, RO-014700 Bucharest, Romania
- ORCID: 0000-0003-4154-8761
- Email: Laurentiu.Leustean@imar.ro
- Genaro López-Acedo
- Affiliation: Departamento Análisis Matemático, Fac. Matemáticas, Universidad de Sevilla, Apdo. 1160, 41080-Sevilla, Spain
- Email: glopez@us.es
- Received by editor(s): March 10, 2012
- Received by editor(s) in revised form: May 29, 2012, and September 22, 2012
- Published electronically: March 26, 2014
- © Copyright 2014
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 366 (2014), 4299-4322
- MSC (2010): Primary 47H09, 47H10, 53C22; Secondary 03F10, 47H05, 90C25, 52A41
- DOI: https://doi.org/10.1090/S0002-9947-2014-05968-0
- MathSciNet review: 3206460