$L_p$-Blaschke valuations
HTML articles powered by AMS MathViewer
- by Jin Li, Shufeng Yuan and Gangsong Leng PDF
- Trans. Amer. Math. Soc. 367 (2015), 3161-3187 Request permission
Abstract:
In this article, a classification of continuous, linearly intertwining, symmetric $L_p$-Blaschke ($p>1$) valuations is established as an extension of Haberl’s work on Blaschke valuations. More precisely, we show that for dimensions $n \geq 3$, the only continuous, linearly intertwining, normalized symmetric $L_p$-Blaschke valuation is the normalized $L_p$-curvature image operator, while for dimension $n = 2$, a rotated normalized $L_p$-curvature image operator is the only additional one. One of the advantages of our approach is that we deal with normalized symmetric $L_p$-Blaschke valuations, which makes it possible to handle the case $p=n$. The cases where $p \not =n$ are also discussed by studying the relations between symmetric $L_p$-Blaschke valuations and normalized ones.References
- S. Alesker, Continuous rotation invariant valuations on convex sets, Ann. of Math. (2) 149 (1999), no. 3, 977–1005. MR 1709308, DOI 10.2307/121078
- S. Alesker, Description of translation invariant valuations on convex sets with solution of P. McMullen’s conjecture, Geom. Funct. Anal. 11 (2001), no. 2, 244–272. MR 1837364, DOI 10.1007/PL00001675
- Andreas Bernig, A Hadwiger-type theorem for the special unitary group, Geom. Funct. Anal. 19 (2009), no. 2, 356–372. MR 2545241, DOI 10.1007/s00039-009-0008-4
- Christoph Haberl, $L_p$ intersection bodies, Adv. Math. 217 (2008), no. 6, 2599–2624. MR 2397461, DOI 10.1016/j.aim.2007.11.013
- Christoph Haberl, Star body valued valuations, Indiana Univ. Math. J. 58 (2009), no. 5, 2253–2276. MR 2583498, DOI 10.1512/iumj.2009.58.3685
- Christoph Haberl, Blaschke valuations, Amer. J. Math. 133 (2011), no. 3, 717–751. MR 2808330, DOI 10.1353/ajm.2011.0019
- Christoph Haberl, Minkowski valuations intertwining with the special linear group, J. Eur. Math. Soc. (JEMS) 14 (2012), no. 5, 1565–1597. MR 2966660, DOI 10.4171/JEMS/341
- Christoph Haberl and Monika Ludwig, A characterization of $L_p$ intersection bodies, Int. Math. Res. Not. , posted on (2006), Art. ID 10548, 29. MR 2250020, DOI 10.1155/IMRN/2006/10548
- Christoph Haberl and Franz E. Schuster, General $L_p$ affine isoperimetric inequalities, J. Differential Geom. 83 (2009), no. 1, 1–26. MR 2545028
- H. Hadwiger, Additive Funktionale $k$-dimensionaler Eikörper. I, Arch. Math. 3 (1952), 470–478 (German). MR 55707, DOI 10.1007/BF01900564
- H. Hadwiger, Vorlesungen über Inhalt, Oberfläche und Isoperimetrie, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1957 (German). MR 0102775, DOI 10.1007/978-3-642-94702-5
- Daniel A. Klain and Gian-Carlo Rota, Introduction to geometric probability, Lezioni Lincee. [Lincei Lectures], Cambridge University Press, Cambridge, 1997. MR 1608265
- Alexander Koldobsky, Inverse formula for the Blaschke-Levy representation, Houston J. Math. 23 (1997), no. 1, 95–108. MR 1688843
- Alexander L. Koldobsky, Generalized Lévy representation of norms and isometric embeddings into $L_p$-spaces, Ann. Inst. H. Poincaré Probab. Statist. 28 (1992), no. 3, 335–353 (English, with English and French summaries). MR 1183989
- Kurt Leichtweiß, Affine geometry of convex bodies, Johann Ambrosius Barth Verlag, Heidelberg, 1998. MR 1630116
- An Min Li, Udo Simon, and Guo Song Zhao, Global affine differential geometry of hypersurfaces, De Gruyter Expositions in Mathematics, vol. 11, Walter de Gruyter & Co., Berlin, 1993. MR 1257186, DOI 10.1515/9783110870428
- Yossi Lonke, Derivatives of the $L^p$-cosine transform, Adv. Math. 176 (2003), no. 2, 175–186. MR 1982881, DOI 10.1016/S0001-8708(03)00126-9
- Monika Ludwig, Projection bodies and valuations, Adv. Math. 172 (2002), no. 2, 158–168. MR 1942402, DOI 10.1016/S0001-8708(02)00021-X
- Monika Ludwig, Ellipsoids and matrix-valued valuations, Duke Math. J. 119 (2003), no. 1, 159–188. MR 1991649, DOI 10.1215/S0012-7094-03-11915-8
- Monika Ludwig, Minkowski valuations, Trans. Amer. Math. Soc. 357 (2005), no. 10, 4191–4213. MR 2159706, DOI 10.1090/S0002-9947-04-03666-9
- Monika Ludwig, Intersection bodies and valuations, Amer. J. Math. 128 (2006), no. 6, 1409–1428. MR 2275906, DOI 10.1353/ajm.2006.0046
- Monika Ludwig and Matthias Reitzner, A classification of $\textrm {SL}(n)$ invariant valuations, Ann. of Math. (2) 172 (2010), no. 2, 1219–1267. MR 2680490, DOI 10.4007/annals.2010.172.1223
- Erwin Lutwak, On some affine isoperimetric inequalities, J. Differential Geom. 23 (1986), no. 1, 1–13. MR 840399
- Erwin Lutwak, Centroid bodies and dual mixed volumes, Proc. London Math. Soc. (3) 60 (1990), no. 2, 365–391. MR 1031458, DOI 10.1112/plms/s3-60.2.365
- Erwin Lutwak, Extended affine surface area, Adv. Math. 85 (1991), no. 1, 39–68. MR 1087796, DOI 10.1016/0001-8708(91)90049-D
- Erwin Lutwak, The Brunn-Minkowski-Firey theory. I. Mixed volumes and the Minkowski problem, J. Differential Geom. 38 (1993), no. 1, 131–150. MR 1231704
- Erwin Lutwak, Selected affine isoperimetric inequalities, Handbook of convex geometry, Vol. A, B, North-Holland, Amsterdam, 1993, pp. 151–176. MR 1242979, DOI 10.1016/B978-0-444-89596-7.50010-9
- Erwin Lutwak, The Brunn-Minkowski-Firey theory. II. Affine and geominimal surface areas, Adv. Math. 118 (1996), no. 2, 244–294. MR 1378681, DOI 10.1006/aima.1996.0022
- Erwin Lutwak, Deane Yang, and Gaoyong Zhang, $L_p$ affine isoperimetric inequalities, J. Differential Geom. 56 (2000), no. 1, 111–132. MR 1863023
- Erwin Lutwak, Deane Yang, and Gaoyong Zhang, On the $L_p$-Minkowski problem, Trans. Amer. Math. Soc. 356 (2004), no. 11, 4359–4370. MR 2067123, DOI 10.1090/S0002-9947-03-03403-2
- Peter McMullen, Valuations and dissections, Handbook of convex geometry, Vol. A, B, North-Holland, Amsterdam, 1993, pp. 933–988. MR 1243000
- Peter McMullen and Rolf Schneider, Valuations on convex bodies, Convexity and its applications, Birkhäuser, Basel, 1983, pp. 170–247. MR 731112
- Abraham Neyman, Representation of $L_p$-norms and isometric embedding in $L_p$-spaces, Israel J. Math. 48 (1984), no. 2-3, 129–138. MR 770695, DOI 10.1007/BF02761158
- Lukas Parapatits, $\textrm {SL}(n)$-contravariant $L_p$-Minkowski valuations, Trans. Amer. Math. Soc. 366 (2014), no. 3, 1195–1211. MR 3145728, DOI 10.1090/S0002-9947-2013-05750-9
- Lukas Parapatits, $\textrm {SL}(n)$-covariant $L_p$-Minkowski valuations, J. Lond. Math. Soc. (2) 89 (2014), no. 2, 397–414. MR 3188625, DOI 10.1112/jlms/jdt068
- Lukas Parapatits and Franz E. Schuster, The Steiner formula for Minkowski valuations, Adv. Math. 230 (2012), no. 3, 978–994. MR 2921168, DOI 10.1016/j.aim.2012.03.024
- Boris Rubin, Inversion of fractional integrals related to the spherical Radon transform, J. Funct. Anal. 157 (1998), no. 2, 470–487. MR 1638340, DOI 10.1006/jfan.1998.3268
- Boris Rubin, Intersection bodies and generalized cosine transforms, Adv. Math. 218 (2008), no. 3, 696–727. MR 2414319, DOI 10.1016/j.aim.2008.01.011
- Rolf Schneider, Equivariant endomorphisms of the space of convex bodies, Trans. Amer. Math. Soc. 194 (1974), 53–78. MR 353147, DOI 10.1090/S0002-9947-1974-0353147-1
- Rolf Schneider, Convex bodies: the Brunn-Minkowski theory, Encyclopedia of Mathematics and its Applications, vol. 44, Cambridge University Press, Cambridge, 1993. MR 1216521, DOI 10.1017/CBO9780511526282
- Rolf Schneider and Franz E. Schuster, Rotation equivariant Minkowski valuations, Int. Math. Res. Not. , posted on (2006), Art. ID 72894, 20. MR 2272092, DOI 10.1155/IMRN/2006/72894
- Franz E. Schuster, Valuations and Busemann-Petty type problems, Adv. Math. 219 (2008), no. 1, 344–368. MR 2435426, DOI 10.1016/j.aim.2008.05.001
- Franz E. Schuster, Crofton measures and Minkowski valuations, Duke Math. J. 154 (2010), no. 1, 1–30. MR 2668553, DOI 10.1215/00127094-2010-033
- Franz E. Schuster and Thomas Wannerer, $\textrm {GL}(n)$ contravariant Minkowski valuations, Trans. Amer. Math. Soc. 364 (2012), no. 2, 815–826. MR 2846354, DOI 10.1090/S0002-9947-2011-05364-X
Additional Information
- Jin Li
- Affiliation: Department of Mathematics, Shanghai University, Shanghai 200444, People’s Republic of China
- Email: lijin2955@gmail.com
- Shufeng Yuan
- Affiliation: Department of Mathematics, Shanghai University, Shanghai 200444, People’s Republic of China
- Email: yuanshufeng2003@163.com
- Gangsong Leng
- Affiliation: Department of Mathematics, Shanghai University, Shanghai 200444, People’s Republic of China
- MR Author ID: 323352
- Email: gleng@staff.shu.edu.cn
- Received by editor(s): September 22, 2012
- Received by editor(s) in revised form: November 19, 2012, and December 10, 2012
- Published electronically: January 20, 2015
- Additional Notes: The authors would like to acknowledge the support from the National Natural Science Foundation of China (11271244), Shanghai Leading Academic Discipline Project (S30104), and Innovation Foundation of Shanghai University (SHUCX120121).
- © Copyright 2015
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 367 (2015), 3161-3187
- MSC (2010): Primary 52B45, 52A20
- DOI: https://doi.org/10.1090/S0002-9947-2015-06047-4
- MathSciNet review: 3314805