Skip to Main Content

Transactions of the American Mathematical Society

Published by the American Mathematical Society since 1900, Transactions of the American Mathematical Society is devoted to longer research articles in all areas of pure and applied mathematics.

ISSN 1088-6850 (online) ISSN 0002-9947 (print)

The 2020 MCQ for Transactions of the American Mathematical Society is 1.48 .

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Apparent contours of nonsingular real cubic surfaces
HTML articles powered by AMS MathViewer

by Sergey Finashin and Viatcheslav Kharlamov PDF
Trans. Amer. Math. Soc. 367 (2015), 7221-7289 Request permission

Abstract:

We give a complete deformation classification of real Zariski sextics, that is, of generic apparent contours of nonsingular real cubic surfaces. As a by-product, we observe a certain “reversion” duality in the set of deformation classes of these sextics.
References
  • V. I. Arnol′d, On the teaching of mathematics, Uspekhi Mat. Nauk 53 (1998), no. 1(319), 229–234 (Russian); English transl., Russian Math. Surveys 53 (1998), no. 1, 229–236. MR 1618209, DOI 10.1070/rm1998v053n01ABEH000005
  • Jean Barge, Jean Lannes, François Latour, and Pierre Vogel, $\Lambda$-sphères, Ann. Sci. École Norm. Sup. (4) 7 (1974), 463–505 (1975) (French). MR 377939
  • Dan Burns Jr. and Michael Rapoport, On the Torelli problem for kählerian $K-3$ surfaces, Ann. Sci. École Norm. Sup. (4) 8 (1975), no. 2, 235–273. MR 447635, DOI 10.24033/asens.1287
  • C. Ciliberto and F. Flamini, On the branch curve of a general projection of a surface to a plane, Trans. Amer. Math. Soc. 363 (2011), no. 7, 3457–3471. MR 2775814, DOI 10.1090/S0002-9947-2011-05401-2
  • Alex Degtyarev, Oka’s conjecture on irreducible plane sextics, J. Lond. Math. Soc. (2) 78 (2008), no. 2, 329–351. MR 2439628, DOI 10.1112/jlms/jdn029
  • Alex Degtyarev, On deformations of singular plane sextics, J. Algebraic Geom. 17 (2008), no. 1, 101–135. MR 2357681, DOI 10.1090/S1056-3911-07-00469-9
  • D. A. Gudkov, The topology of real projective algebraic varieties, Uspehi Mat. Nauk 29 (1974), no. 4(178), 3–79 (Russian). Collection of articles dedicated to the memory of Ivan Georgievič Petrovskiĭ, II. MR 0399085
  • Lucien Guillou and Alexis Marin (eds.), À la recherche de la topologie perdue, Progress in Mathematics, vol. 62, Birkhäuser Boston, Inc., Boston, MA, 1986 (French). I. Du côté de chez Rohlin. II. Le côté de Casson. [I. Rokhlin’s way. II. Casson’s way]. MR 900243
  • I. V. Itenberg, Rigid isotopy classification of curves of degree $6$ with one nondegenerate double point [ MR1157144 (93c:14043)], Topology of manifolds and varieties, Adv. Soviet Math., vol. 18, Amer. Math. Soc., Providence, RI, 1994, pp. 193–208. MR 1296896, DOI 10.1007/bf01562059
  • Donald G. James, Diagonalizable indefinite integral quadratic forms, Acta Arith. 50 (1988), no. 3, 309–314. MR 960557, DOI 10.4064/aa-50-3-309-314
  • V. M. Harlamov, New congruences for the Euler characteristic of real algebraic manifolds, Funkcional. Anal. i Priložen. 7 (1973), no. 2, 74–78 (Russian). MR 0331403
  • V. M. Harlamov, Topological types of nonsingular surfaces of degree $4$ in $\textbf {R}P^{3}$, Funkcional. Anal. i Priložen. 10 (1976), no. 4, 55–68 (Russian). MR 0450288
  • Vik. S. Kulikov, On Chisini’s conjecture, Izv. Ross. Akad. Nauk Ser. Mat. 63 (1999), no. 6, 83–116 (Russian, with Russian summary); English transl., Izv. Math. 63 (1999), no. 6, 1139–1170. MR 1748562, DOI 10.1070/im1999v063n06ABEH000267
  • Vik. S. Kulikov, Surjectivity of the period mapping for $K3$ surfaces, Uspehi Mat. Nauk 32 (1977), no. 4(196), 257–258 (Russian). MR 0480528
  • G. Mikhalkin, Visible contours of cubic surfaces in $\mathbb {R P}^3$, Preprint MPI, no. 95—34 (1995), 1-8.
  • Rick Miranda and David R. Morrison, The number of embeddings of integral quadratic forms. I, Proc. Japan Acad. Ser. A Math. Sci. 61 (1985), no. 10, 317–320. MR 834537
  • Rick Miranda and David R. Morrison, The number of embeddings of integral quadratic forms. II, Proc. Japan Acad. Ser. A Math. Sci. 62 (1986), no. 1, 29–32. MR 839800
  • B. G. Moishezon, Stable branch curves and braid monodromies, Algebraic geometry (Chicago, Ill., 1980) Lecture Notes in Math., vol. 862, Springer, Berlin-New York, 1981, pp. 107–192. MR 644819
  • V. V. Nikulin, Integer symmetric bilinear forms and some of their geometric applications, Izv. Akad. Nauk SSSR Ser. Mat. 43 (1979), no. 1, 111–177, 238 (Russian). MR 525944
  • V. V. Nikulin, Discrete reflection groups in Lobachevsky spaces and algebraic surfaces, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986) Amer. Math. Soc., Providence, RI, 1987, pp. 654–671. MR 934268
  • V. V. Nikulin, Involutions of integer quadratic forms and their applications to real algebraic geometry, Izv. Akad. Nauk SSSR Ser. Mat. 47 (1983), no. 1, 109–188 (Russian). MR 688920
  • Mutsuo Oka, Geometry of reduced sextics of torus type, Tokyo J. Math. 26 (2003), no. 2, 301–327. MR 2020788, DOI 10.3836/tjm/1244208593
  • Mutsuo Oka and Duc Tai Pho, Classification of sextics of torus type, Tokyo J. Math. 25 (2002), no. 2, 399–433. MR 1948673, DOI 10.3836/tjm/1244208862
  • Duc Tai Pho, Classification of singularities on torus curves of type $(2,3)$, Kodai Math. J. 24 (2001), no. 2, 259–284. MR 1839259, DOI 10.2996/kmj/1106168786
  • G. M. Polotovsky, Full classification of M-decomposable real curves of order 6 in real projective plane. (Russian) Dep. VINITI (1978), no. 1349-78, 1–103.
  • George Salmon, A treatise on the analytic geometry of three dimensions, Chelsea Publishing Co., New York, 1958. Revised by R. A. P. Rogers; 7th ed. Vol. 1; Edited by C. H. Rowe. MR 0094753
  • B. Saint-Donat, Projective models of $K-3$ surfaces, Amer. J. Math. 96 (1974), 602–639. MR 364263, DOI 10.2307/2373709
  • B. Segre, Sulla caratterizzazione delle curve di diramazione dei piani multipli generali, Memorie Accad. d’Italia 1 no. 4 (1930), 5–31.
  • Tohsuke Urabe, Dynkin graphs and combinations of singularities on plane sextic curves, Singularities (Iowa City, IA, 1986) Contemp. Math., vol. 90, Amer. Math. Soc., Providence, RI, 1989, pp. 295–316. MR 1000608, DOI 10.1090/conm/090/1000608
  • F. van der Blij, An invariant of quadratic forms mod $8$, Nederl. Akad. Wetensch. Proc. Ser. A 62 = Indag. Math. 21 (1959), 291–293. MR 0108467
  • C. T. C. Wall, Quadratic forms on finite groups, and related topics, Topology 2 (1963), 281–298. MR 156890, DOI 10.1016/0040-9383(63)90012-0
  • C. T. C. Wall, On the orthogonal groups of unimodular quadratic forms, Math. Ann. 147 (1962), 328–338. MR 138565, DOI 10.1007/BF01440955
  • Oscar Zariski, On the Problem of Existence of Algebraic Functions of Two Variables Possessing a Given Branch Curve, Amer. J. Math. 51 (1929), no. 2, 305–328. MR 1506719, DOI 10.2307/2370712
  • O. Zariski, Algebraic Surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, Springer, 1935.
Similar Articles
Additional Information
  • Sergey Finashin
  • Affiliation: Department of Mathematics, Middle East Technical University, Ankara 06800 Turkey
  • MR Author ID: 244559
  • Viatcheslav Kharlamov
  • Affiliation: Département de Mathématiques, Université de Strasbourg et IRMA (CNRS), 7 rue René-Descartes 67084 Strasbourg Cedex, France
  • MR Author ID: 202474
  • ORCID: 0000-0001-9341-1391
  • Received by editor(s): June 11, 2013
  • Received by editor(s) in revised form: August 17, 2013
  • Published electronically: February 16, 2015
  • Additional Notes: The second author acknowledges financial support by the grant ANR-09-BLAN-0039-01 of Agence Nationale de la Recherche.
  • © Copyright 2015 American Mathematical Society
    The copyright for this article reverts to public domain 28 years after publication.
  • Journal: Trans. Amer. Math. Soc. 367 (2015), 7221-7289
  • MSC (2010): Primary 14P25, 14J28, 14J70, 14N25, 14H45
  • DOI: https://doi.org/10.1090/S0002-9947-2015-06286-2
  • MathSciNet review: 3378829