## Combinatorics of tight geodesics and stable lengths

HTML articles powered by AMS MathViewer

- by Richard C. H. Webb PDF
- Trans. Amer. Math. Soc.
**367**(2015), 7323-7342 Request permission

## Abstract:

We give an algorithm to compute the stable lengths of pseudo-Anosovs on the curve graph, answering a question of Bowditch. We also give a procedure to compute all invariant tight geodesic axes of pseudo-Anosovs.

Along the way we show that there are constants $1<a_1<a_2$ such that the minimal upper bound on ‘slices’ of tight geodesics is bounded below and above by $a_1^{\xi (S)}$ and $a_2^{\xi (S)}$, where $\xi (S)$ is the complexity of the surface. As a consequence, we give the first computable bounds on the asymptotic dimension of curve graphs and mapping class groups.

Our techniques involve a generalization of Masur–Minsky’s tight geodesics and a new class of paths on which their tightening procedure works.

## References

- Tarik Aougab,
*Uniform hyperbolicity of the graphs of curves*, Geom. Topol.**17**(2013), no. 5, 2855–2875. MR**3190300**, DOI 10.2140/gt.2013.17.2855 - Gregory C. Bell and Koji Fujiwara,
*The asymptotic dimension of a curve graph is finite*, J. Lond. Math. Soc. (2)**77**(2008), no. 1, 33–50. MR**2389915**, DOI 10.1112/jlms/jdm090 - M. Bestvina, K. Bromberg, and K. Fujiwara,
*Constructing group actions on quasi-trees and applications to mapping class groups*. http://arxiv.org/abs/1006.1939v3., DOI 10.1007/s10240-014-0067-4 - Mladen Bestvina and Koji Fujiwara,
*Bounded cohomology of subgroups of mapping class groups*, Geom. Topol.**6**(2002), 69–89. MR**1914565**, DOI 10.2140/gt.2002.6.69 - Joan S. Birman and William W. Menasco,
*The curve complex has dead ends*. http://arxiv.org/abs/1210.6698. - Brian H. Bowditch,
*The ending lamination theorem*. http://homepages.warwick.ac.uk/~masgak/papers/elt.pdf. - Brian H. Bowditch,
*Uniform hyperbolicity of the curve graphs*, Pacific J. Math.**269**(2014), no. 2, 269–280. MR**3238474**, DOI 10.2140/pjm.2014.269.269 - Brian H. Bowditch,
*Intersection numbers and the hyperbolicity of the curve complex*, J. Reine Angew. Math.**598**(2006), 105–129. MR**2270568**, DOI 10.1515/CRELLE.2006.070 - Brian H. Bowditch,
*Tight geodesics in the curve complex*, Invent. Math.**171**(2008), no. 2, 281–300. MR**2367021**, DOI 10.1007/s00222-007-0081-y - Jeffrey F. Brock, Richard D. Canary, and Yair N. Minsky,
*The classification of Kleinian surface groups, II: The ending lamination conjecture*, Ann. of Math. (2)**176**(2012), no. 1, 1–149. MR**2925381**, DOI 10.4007/annals.2012.176.1.1 - S. V. Buyalo and N. D. Lebedeva,
*Dimensions of locally and asymptotically self-similar spaces*, Algebra i Analiz**19**(2007), no. 1, 60–92 (Russian, with Russian summary); English transl., St. Petersburg Math. J.**19**(2008), no. 1, 45–65. MR**2319510**, DOI 10.1090/S1061-0022-07-00985-5 - Danny Calegari and Koji Fujiwara,
*Stable commutator length in word-hyperbolic groups*, Groups Geom. Dyn.**4**(2010), no. 1, 59–90. MR**2566301**, DOI 10.4171/GGD/75 - Matt Clay, Kasra Rafi, and Saul Schleimer,
*Uniform hyperbolicity of the curve graph via surgery sequences*, Algebr. Geom. Topol.**14**(2014), no. 6, 3325–3344. MR**3302964**, DOI 10.2140/agt.2014.14.3325 - F. Dahmani, V. Guirardel, and D. Osin,
*Hyperbolically embedded subgroups and rotating families in groups acting on hyperbolic spaces*. http://arxiv.org/abs/1111.7048., DOI 10.1090/memo/1156 - Cornelia Druţu, Shahar Mozes, and Mark Sapir,
*Divergence in lattices in semisimple Lie groups and graphs of groups*, Trans. Amer. Math. Soc.**362**(2010), no. 5, 2451–2505. MR**2584607**, DOI 10.1090/S0002-9947-09-04882-X - Benson Farb and Dan Margalit,
*A primer on mapping class groups*, Princeton Mathematical Series, vol. 49, Princeton University Press, Princeton, NJ, 2012. MR**2850125** - Koji Fujiwara,
*Subgroups generated by two pseudo-Anosov elements in a mapping class group. I. Uniform exponential growth*, Groups of diffeomorphisms, Adv. Stud. Pure Math., vol. 52, Math. Soc. Japan, Tokyo, 2008, pp. 283–296. MR**2509713**, DOI 10.2969/aspm/05210283 - D. Gabai,
*On the topology of ending lamination space*. http://arxiv.org/abs/1105.3648. - Vaibhav Gadre and Chia-Yen Tsai,
*Minimal pseudo-Anosov translation lengths on the complex of curves*, Geom. Topol.**15**(2011), no. 3, 1297–1312. MR**2825314**, DOI 10.2140/gt.2011.15.1297 - M. Gromov,
*Asymptotic invariants of infinite groups*, Geometric group theory, Vol. 2 (Sussex, 1991) London Math. Soc. Lecture Note Ser., vol. 182, Cambridge Univ. Press, Cambridge, 1993, pp. 1–295. MR**1253544** - Ursula Hamenstädt,
*Geometry of the complex of curves and of Teichmüller space*, Handbook of Teichmüller theory. Vol. I, IRMA Lect. Math. Theor. Phys., vol. 11, Eur. Math. Soc., Zürich, 2007, pp. 447–467. MR**2349677**, DOI 10.4171/029-1/11 - Ursula Hamenstädt,
*Bounded cohomology and isometry groups of hyperbolic spaces*, J. Eur. Math. Soc. (JEMS)**10**(2008), no. 2, 315–349. MR**2390326**, DOI 10.4171/JEMS/112 - W. J. Harvey,
*Boundary structure of the modular group*, Riemann surfaces and related topics: Proceedings of the 1978 Stony Brook Conference (State Univ. New York, Stony Brook, N.Y., 1978) Ann. of Math. Stud., vol. 97, Princeton Univ. Press, Princeton, N.J., 1981, pp. 245–251. MR**624817** - S. Hensel, P. Przytycki, and R. C. H. Webb,
*Slim unicorns and uniform hyperbolicity for arc graphs and curve graphs*. http://arxiv.org/abs/1301.5577. To appear in Journal of the European Mathematical Society. - Yoshikata Kida,
*The mapping class group from the viewpoint of measure equivalence theory*, Mem. Amer. Math. Soc.**196**(2008), no. 916, viii+190. MR**2458794**, DOI 10.1090/memo/0916 - Jason Paige Leasure,
*Geodesics in the complex of curves of a surface*, ProQuest LLC, Ann Arbor, MI, 2002. Thesis (Ph.D.)–The University of Texas at Austin. MR**2705485** - H. A. Masur and Y. N. Minsky,
*Geometry of the complex of curves. II. Hierarchical structure*, Geom. Funct. Anal.**10**(2000), no. 4, 902–974. MR**1791145**, DOI 10.1007/PL00001643 - Howard A. Masur and Yair N. Minsky,
*Geometry of the complex of curves. I. Hyperbolicity*, Invent. Math.**138**(1999), no. 1, 103–149. MR**1714338**, DOI 10.1007/s002220050343 - Yair Minsky,
*The classification of Kleinian surface groups. I. Models and bounds*, Ann. of Math. (2)**171**(2010), no. 1, 1–107. MR**2630036**, DOI 10.4007/annals.2010.171.1 - J. Barkley Rosser and Lowell Schoenfeld,
*Approximate formulas for some functions of prime numbers*, Illinois J. Math.**6**(1962), 64–94. MR**137689** - Kenneth J. Shackleton,
*An acylindricity theorem for the mapping class group*, New York J. Math.**16**(2010), 563–573. MR**2740591** - Kenneth J. Shackleton,
*Tightness and computing distances in the curve complex*, Geom. Dedicata**160**(2012), 243–259. MR**2970053**, DOI 10.1007/s10711-011-9680-2 - A. D. Valdivia,
*Asymptotic translation length in the curve complex*. http://arxiv.org/abs/1304.6606. - R. C. H. Webb,
*Uniform bounds for bounded geodesic image theorems*. Submitted. - C. Zhang,
*Invariant geodesics in the curve complex under point-pushing pseudo-anosov mapping classes*. http://arxiv.org/abs/1303.4002. - C. Zhang,
*On the minimum of asymptotic translation lengths of point-pushing pseudo-anosov maps on punctured riemann surfaces*. http://arxiv.org/abs/1301.4911.

## Additional Information

**Richard C. H. Webb**- Affiliation: Mathematics Institute, University of Warwick, Coventry, CV4 7AL, United Kingdom
- Address at time of publication: Department of Mathematics, University College London, Gower Street, London, WC1E 6BT, United Kingdom
- MR Author ID: 1104740
- ORCID: 0000-0001-9161-0928
- Email: R.C.H.Webb@warwick.ac.uk, richard.webb@ucl.ac.uk
- Received by editor(s): May 27, 2013
- Received by editor(s) in revised form: October 13, 2013
- Published electronically: April 3, 2015
- Additional Notes: This work was supported by the Engineering and Physical Sciences Research Council Doctoral Training Grant.
- © Copyright 2015 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**367**(2015), 7323-7342 - MSC (2010): Primary 57M99; Secondary 20F65
- DOI: https://doi.org/10.1090/tran/6301
- MathSciNet review: 3378831