## Observables of Macdonald processes

HTML articles powered by AMS MathViewer

- by Alexei Borodin, Ivan Corwin, Vadim Gorin and Shamil Shakirov PDF
- Trans. Amer. Math. Soc.
**368**(2016), 1517-1558 Request permission

## Abstract:

We present a framework for computing averages of various observables of Macdonald processes. This leads to new contour–integral formulas for averages of a large class of multilevel observables, as well as Fredholm determinants for averages of two different single level observables.## References

- A. Aggrawal,
*Correlation functions of the Schur process through Macdonald difference operators*. In preparation. - Gideon Amir, Ivan Corwin, and Jeremy Quastel,
*Probability distribution of the free energy of the continuum directed random polymer in $1+1$ dimensions*, Comm. Pure Appl. Math.**64**(2011), no. 4, 466–537. MR**2796514**, DOI 10.1002/cpa.20347 - A. M. Borodin,
*Limit Jordan normal form of large triangular matrices over a finite field*, Funktsional. Anal. i Prilozhen.**29**(1995), no. 4, 72–75 (Russian); English transl., Funct. Anal. Appl.**29**(1995), no. 4, 279–281 (1996). MR**1375543**, DOI 10.1007/BF01077476 - Alexei Borodin and Ivan Corwin,
*Macdonald processes*, Probab. Theory Related Fields**158**(2014), no. 1-2, 225–400. MR**3152785**, DOI 10.1007/s00440-013-0482-3 - A. Borodin and I. Corwin,
*Discrete time*$q$–TASEPs, Int. Math Rev. Not., to appear, arXiv:1305.2972. - Alexei Borodin, Ivan Corwin, and Patrik Ferrari,
*Free energy fluctuations for directed polymers in random media in $1+1$ dimension*, Comm. Pure Appl. Math.**67**(2014), no. 7, 1129–1214. MR**3207195**, DOI 10.1002/cpa.21520 - A. Borodin, I. Corwin, P. L. Ferrari, and B. Vető,
*Stationary solution of 1d KPZ equation*. In preparation. - Alexei Borodin, Ivan Corwin, and Daniel Remenik,
*Log-gamma polymer free energy fluctuations via a Fredholm determinant identity*, Comm. Math. Phys.**324**(2013), no. 1, 215–232. MR**3116323**, DOI 10.1007/s00220-013-1750-x - Alexei Borodin, Ivan Corwin, and Tomohiro Sasamoto,
*From duality to determinants for $q$-TASEP and ASEP*, Ann. Probab.**42**(2014), no. 6, 2314–2382. MR**3265169**, DOI 10.1214/13-AOP868 - A. Borodin and V. Gorin,
*Lectures on integrable probability*, arXiv:1212.3351. - A. Borodin and V. Gorin,
*General $\beta$ Jacobi corners process and the Gaussian free field*, arXiv:1305.3627. - Alexei Borodin and Grigori Olshanski,
*$Z$-measures on partitions and their scaling limits*, European J. Combin.**26**(2005), no. 6, 795–834. MR**2143199**, DOI 10.1016/j.ejc.2004.06.003 - A. Borodin and L. Petrov,
*Nearest neighbor Markov dynamics on Macdonald processes*, arXiv:1305.5501. - Ivan Corwin, Neil O’Connell, Timo Seppäläinen, and Nikolaos Zygouras,
*Tropical combinatorics and Whittaker functions*, Duke Math. J.**163**(2014), no. 3, 513–563. MR**3165422**, DOI 10.1215/00127094-2410289 - I. Corwin and L. Petrov,
*The q-PushASEP: A new integrable model for traffic in $1+1$ dimension*, arXiv:1308.3124. - Anton Gerasimov, Dimitri Lebedev, and Sergey Oblezin,
*On $q$-deformed ${\mathfrak {gl}}_{l+1}$-Whittaker function. I, II, III*, Comm. Math. Phys.**294**(2010), no. 1, 97–119., DOI 10.1007/s00220-009-0917-y, MR2575477 (2011d:17023); ibid, 121–143. MR2575478 (2011d:17024); Lett. Math. Phys. 97 (2011), no. 1, 1–24. MR2802312 (2012f:17030) - B. Feigin, K. Hashizume, A. Hoshino, J. Shiraishi, and S. Yanagida,
*A commutative algebra on degenerate $\Bbb {CP}^1$ and Macdonald polynomials*, J. Math. Phys.**50**(2009), no. 9, 095215, 42. MR**2566895**, DOI 10.1063/1.3192773 - Peter J. Forrester and Eric M. Rains,
*Interpretations of some parameter dependent generalizations of classical matrix ensembles*, Probab. Theory Related Fields**131**(2005), no. 1, 1–61. MR**2105043**, DOI 10.1007/s00440-004-0375-6 - J. Fulman,
*Probabilistic measures and algorithms arising from the Macdonald symmetric functions*, arXiv:math/971223. - Jason Fulman,
*Random matrix theory over finite fields*, Bull. Amer. Math. Soc. (N.S.)**39**(2002), no. 1, 51–85. MR**1864086**, DOI 10.1090/S0273-0979-01-00920-X - Vadim Gorin, Sergei Kerov, and Anatoly Vershik,
*Finite traces and representations of the group of infinite matrices over a finite field*, Adv. Math.**254**(2014), 331–395. MR**3161102**, DOI 10.1016/j.aim.2013.12.028 - V. Gorin and M. Shkolnikov,
*Multilevel Dyson Brownian Motions via Jack polynomials*. In preparation. - S. Kerov,
*The boundary of Young lattice and random Young tableaux*, Formal power series and algebraic combinatorics (New Brunswick, NJ, 1994) DIMACS Ser. Discrete Math. Theoret. Comput. Sci., vol. 24, Amer. Math. Soc., Providence, RI, 1996, pp. 133–158. MR**1363510**, DOI 10.1007/bf02362775 - S. V. Kerov,
*Asymptotic representation theory of the symmetric group and its applications in analysis*, Translations of Mathematical Monographs, vol. 219, American Mathematical Society, Providence, RI, 2003. Translated from the Russian manuscript by N. V. Tsilevich; With a foreword by A. Vershik and comments by G. Olshanski. MR**1984868**, DOI 10.1090/mmono/219 - Sergei Kerov, Andrei Okounkov, and Grigori Olshanski,
*The boundary of the Young graph with Jack edge multiplicities*, Internat. Math. Res. Notices**4**(1998), 173–199. MR**1609628**, DOI 10.1155/S1073792898000154 - J. F. C. Kingman,
*Random partitions in population genetics*, Proc. Roy. Soc. London Ser. A**361**(1978), no. 1704, 1–20. MR**526801**, DOI 10.1098/rspa.1978.0089 - C. Krattenthaler,
*Advanced determinant calculus*, Sém. Lothar. Combin.**42**(1999), Art. B42q, 67. The Andrews Festschrift (Maratea, 1998). MR**1701596** - I. G. Macdonald,
*Symmetric functions and Hall polynomials*, 2nd ed., Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1995. With contributions by A. Zelevinsky; Oxford Science Publications. MR**1354144** - M. Noumi and A. Sano,
*An infinite family of higher-order difference operators that commute with Ruijsenaars operators of type A*. In preparation. - Neil O’Connell,
*Directed polymers and the quantum Toda lattice*, Ann. Probab.**40**(2012), no. 2, 437–458. MR**2952082**, DOI 10.1214/10-AOP632 - Neil O’Connell and Marc Yor,
*Brownian analogues of Burke’s theorem*, Stochastic Process. Appl.**96**(2001), no. 2, 285–304. MR**1865759**, DOI 10.1016/S0304-4149(01)00119-3 - Andrei Okounkov,
*Infinite wedge and random partitions*, Selecta Math. (N.S.)**7**(2001), no. 1, 57–81. MR**1856553**, DOI 10.1007/PL00001398 - A. Okounkov,
*$\textrm {BC}$-type interpolation Macdonald polynomials and binomial formula for Koornwinder polynomials*, Transform. Groups**3**(1998), no. 2, 181–207. MR**1628453**, DOI 10.1007/BF01236432 - Andrei Okounkov and Grigori Olshanski,
*Asymptotics of Jack polynomials as the number of variables goes to infinity*, Internat. Math. Res. Notices**13**(1998), 641–682. MR**1636541**, DOI 10.1155/S1073792898000403 - Andrei Okounkov and Nikolai Reshetikhin,
*Correlation function of Schur process with application to local geometry of a random 3-dimensional Young diagram*, J. Amer. Math. Soc.**16**(2003), no. 3, 581–603. MR**1969205**, DOI 10.1090/S0894-0347-03-00425-9 - L. A. Petrov,
*A two-parameter family of infinite-dimensional diffusions on the Kingman simplex*, Funktsional. Anal. i Prilozhen.**43**(2009), no. 4, 45–66 (Russian, with Russian summary); English transl., Funct. Anal. Appl.**43**(2009), no. 4, 279–296. MR**2596654**, DOI 10.1007/s10688-009-0036-8 - Eric M. Rains,
*Transformations of elliptic hypergeometric integrals*, Ann. of Math. (2)**171**(2010), no. 1, 169–243. MR**2630038**, DOI 10.4007/annals.2010.171.169 - Eric M. Rains,
*Limits of elliptic hypergeometric integrals*, Ramanujan J.**18**(2009), no. 3, 257–306. MR**2495549**, DOI 10.1007/s11139-007-9055-3 - T. Sasamoto and H. Spohn,
*One-dimensional KPZ equation: an exact solution and its universality*, Phys. Rev. Lett.**104**(2010), 23. - Timo Seppäläinen,
*Scaling for a one-dimensional directed polymer with boundary conditions*, Ann. Probab.**40**(2012), no. 1, 19–73. MR**2917766**, DOI 10.1214/10-AOP617 - Jun’ichi Shiraishi,
*A family of integral transformations and basic hypergeometric series*, Comm. Math. Phys.**263**(2006), no. 2, 439–460. MR**2207651**, DOI 10.1007/s00220-005-1504-5 - Mirjana Vuletić,
*A generalization of MacMahon’s formula*, Trans. Amer. Math. Soc.**361**(2009), no. 5, 2789–2804. MR**2471939**, DOI 10.1090/S0002-9947-08-04753-3 - S. Ole Warnaar,
*Bisymmetric functions, Macdonald polynomials and $\mathfrak {sl}_3$ basic hypergeometric series*, Compos. Math.**144**(2008), no. 2, 271–303. MR**2406113**, DOI 10.1112/S0010437X07003211 - Andrey V. Zelevinsky,
*Representations of finite classical groups*, Lecture Notes in Mathematics, vol. 869, Springer-Verlag, Berlin-New York, 1981. A Hopf algebra approach. MR**643482**

## Additional Information

**Alexei Borodin**- Affiliation: Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 – and – Institute for Information Transmission Problems of Russian Academy of Sciences, Moscow, Russia
- MR Author ID: 604024
- Email: borodin@math.mit.edu
**Ivan Corwin**- Affiliation: Department of Mathematics, Columbia University, 2990 Broadway, New York, New York 10027 – and – Clay Mathematics Institute, 10 Memorial Boulevard, Suite 902, Providence, Rhode Island 02903 – and – Institut Henri Poincaré, 11 Rue Pierre et Marie Curie, 75005 Paris, France
- MR Author ID: 833613
- Email: ivan.corwin@gmail.com
**Vadim Gorin**- Affiliation: Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 – and – Institute for Information Transmission Problems of Russian Academy of Sciences, Moscow, Russia
- Email: vadicgor@gmail.com
**Shamil Shakirov**- Affiliation: Department of Mathematics, University of California Berkeley, Berkeley, California 94720
- Email: shakirov@itep.ru
- Received by editor(s): June 10, 2013
- Received by editor(s) in revised form: December 6, 2013, and December 16, 2013
- Published electronically: June 18, 2015
- © Copyright 2015 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**368**(2016), 1517-1558 - MSC (2010): Primary 05E05
- DOI: https://doi.org/10.1090/tran/6359
- MathSciNet review: 3449217

Dedicated: To the memory of A. Zelevinsky