Application of a $\mathbb {Z}_{3}$-orbifold construction to the lattice vertex operator algebras associated to Niemeier lattices
HTML articles powered by AMS MathViewer
- by Daisuke Sagaki and Hiroki Shimakura PDF
- Trans. Amer. Math. Soc. 368 (2016), 1621-1646 Request permission
Abstract:
By applying Miyamoto’s $\mathbb {Z}_{3}$-orbifold construction to the lattice vertex operator algebras associated to Niemeier lattices and their automorphisms of order $3$, we construct holomorphic vertex operator algebras of central charge $24$ whose Lie algebras of the weight one spaces are of types $A_{2,3}^6$, $E_{6,3}G_{2,1}^{3}$, and $A_{5,3}D_{4,3}A_{1,1}^{3}$, which correspond to No. 6, No. 17, and No. 32 on Schellekens’ list, respectively.References
- J. H. Conway and N. J. A. Sloane, Sphere packings, lattices and groups, 3rd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 290, Springer-Verlag, New York, 1999. With additional contributions by E. Bannai, R. E. Borcherds, J. Leech, S. P. Norton, A. M. Odlyzko, R. A. Parker, L. Queen and B. B. Venkov. MR 1662447, DOI 10.1007/978-1-4757-6568-7
- L. Dolan, P. Goddard, and P. Montague, Conformal field theories, representations and lattice constructions, Comm. Math. Phys. 179 (1996), no. 1, 61–120. MR 1395218
- Chongying Dong and James Lepowsky, The algebraic structure of relative twisted vertex operators, J. Pure Appl. Algebra 110 (1996), no. 3, 259–295. MR 1393116, DOI 10.1016/0022-4049(95)00095-X
- Chongying Dong, Haisheng Li, and Geoffrey Mason, Twisted representations of vertex operator algebras, Math. Ann. 310 (1998), no. 3, 571–600. MR 1615132, DOI 10.1007/s002080050161
- Chongying Dong, Haisheng Li, and Geoffrey Mason, Modular-invariance of trace functions in orbifold theory and generalized Moonshine, Comm. Math. Phys. 214 (2000), no. 1, 1–56. MR 1794264, DOI 10.1007/s002200000242
- Chongying Dong and Geoffrey Mason, Holomorphic vertex operator algebras of small central charge, Pacific J. Math. 213 (2004), no. 2, 253–266. MR 2036919, DOI 10.2140/pjm.2004.213.253
- Chongying Dong and Geoffrey Mason, Integrability of $C_2$-cofinite vertex operator algebras, Int. Math. Res. Not. , posted on (2006), Art. ID 80468, 15. MR 2219226, DOI 10.1155/IMRN/2006/80468
- Igor Frenkel, James Lepowsky, and Arne Meurman, Vertex operator algebras and the Monster, Pure and Applied Mathematics, vol. 134, Academic Press, Inc., Boston, MA, 1988. MR 996026
- Motohiro Ishii, Daisuke Sagaki, and Hiroki Shimakura, Automorphisms of Niemeier lattices for Miyamoto’s $\Bbb {Z}_3$-orbifold construction, Math. Z. 280 (2015), no. 1-2, 55–83. MR 3343898, DOI 10.1007/s00209-015-1413-z
- Victor G. Kac, Infinite-dimensional Lie algebras, 3rd ed., Cambridge University Press, Cambridge, 1990. MR 1104219, DOI 10.1017/CBO9780511626234
- Ching Hung Lam, On the constructions of holomorphic vertex operator algebras of central charge 24, Comm. Math. Phys. 305 (2011), no. 1, 153–198. MR 2802303, DOI 10.1007/s00220-011-1212-2
- Ching Hung Lam and Hiroki Shimakura, Quadratic spaces and holomorphic framed vertex operator algebras of central charge 24, Proc. Lond. Math. Soc. (3) 104 (2012), no. 3, 540–576. MR 2900236, DOI 10.1112/plms/pdr041
- Ching Hung Lam and Hiroki Shimakura, Classification of holomorphic framed vertex operator algebras of central charge 24, Amer. J. Math. 137 (2015), no. 1, 111–137. MR 3318088, DOI 10.1353/ajm.2015.0001
- Ching Hung Lam and Hiroshi Yamauchi, On the structure of framed vertex operator algebras and their pointwise frame stabilizers, Comm. Math. Phys. 277 (2008), no. 1, 237–285. MR 2357431, DOI 10.1007/s00220-007-0323-2
- J. Lepowsky, Calculus of twisted vertex operators, Proc. Nat. Acad. Sci. U.S.A. 82 (1985), no. 24, 8295–8299. MR 820716, DOI 10.1073/pnas.82.24.8295
- James Lepowsky and Haisheng Li, Introduction to vertex operator algebras and their representations, Progress in Mathematics, vol. 227, Birkhäuser Boston, Inc., Boston, MA, 2004. MR 2023933, DOI 10.1007/978-0-8176-8186-9
- Masahiko Miyamoto, A $\Bbb Z_3$-orbifold theory of lattice vertex operator algebra and $\Bbb Z_3$-orbifold constructions, Symmetries, integrable systems and representations, Springer Proc. Math. Stat., vol. 40, Springer, Heidelberg, 2013, pp. 319–344. MR 3077690, DOI 10.1007/978-1-4471-4863-0_{1}3
- A. N. Schellekens, Meromorphic $c=24$ conformal field theories, Comm. Math. Phys. 153 (1993), no. 1, 159–185. MR 1213740
- Yongchang Zhu, Modular invariance of characters of vertex operator algebras, J. Amer. Math. Soc. 9 (1996), no. 1, 237–302. MR 1317233, DOI 10.1090/S0894-0347-96-00182-8
Additional Information
- Daisuke Sagaki
- Affiliation: Institute of Mathematics, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8571, Japan
- MR Author ID: 680572
- Email: sagaki@math.tsukuba.ac.jp
- Hiroki Shimakura
- Affiliation: Graduate School of Information Sciences, Tohoku University, Aramaki aza Aoba 6-3-09, Aoba-ku, Sendai 980-8579, Japan
- MR Author ID: 688879
- Email: shimakura@m.tohoku.ac.jp
- Received by editor(s): May 18, 2013
- Received by editor(s) in revised form: December 25, 2013
- Published electronically: July 1, 2015
- Additional Notes: The first author was partially supported by Grant-in-Aid for Young Scientists (B) No. 23740003, Japan
The second author was partially supported by Grant-in-Aid for Scientific Research (C) No. 23540013, Japan - © Copyright 2015 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 368 (2016), 1621-1646
- MSC (2010): Primary 17B69
- DOI: https://doi.org/10.1090/tran/6382
- MathSciNet review: 3449220