The Sato-Tate law for Drinfeld modules
HTML articles powered by AMS MathViewer
- by David Zywina PDF
- Trans. Amer. Math. Soc. 368 (2016), 2185-2222 Request permission
Abstract:
We prove an analogue of the Sato-Tate conjecture for Drinfeld modules. Using ideas of Drinfeld, J.-K. Yu showed that Drinfeld modules satisfy some Sato-Tate law, but did not describe the actual law. More precisely, for a Drinfeld module $\phi$ defined over a field $L$, he constructs a continuous representation $\rho _\infty \colon W_L \to D^\times$ of the Weil group of $L$ into a certain division algebra, which encodes the Sato-Tate law. When $\phi$ has generic characteristic and $L$ is finitely generated, we shall describe the image of $\rho _\infty$ up to commensurability. As an application, we give improved upper bounds for the Drinfeld module analogue of the Lang-Trotter conjecture.References
- Greg W. Anderson, $t$-motives, Duke Math. J. 53 (1986), no. 2, 457–502. MR 850546, DOI 10.1215/S0012-7094-86-05328-7
- Laurent Clozel, Michael Harris, and Richard Taylor, Automorphy for some $l$-adic lifts of automorphic mod $l$ Galois representations, Publ. Math. Inst. Hautes Études Sci. 108 (2008), 1–181. With Appendix A, summarizing unpublished work of Russ Mann, and Appendix B by Marie-France Vignéras. MR 2470687, DOI 10.1007/s10240-008-0016-1
- Chantal David, Frobenius distributions of Drinfeld modules of any rank, J. Number Theory 90 (2001), no. 2, 329–340. MR 1858082, DOI 10.1006/jnth.2000.2664
- Chantal David, Average distribution of supersingular Drinfel′d modules, J. Number Theory 56 (1996), no. 2, 366–380. MR 1373559, DOI 10.1006/jnth.1996.0025
- V. G. Drinfel′d, Elliptic modules, Mat. Sb. (N.S.) 94(136) (1974), 594–627, 656 (Russian). MR 0384707
- V. G. Drinfel′d, Elliptic modules. II, Mat. Sb. (N.S.) 102(144) (1977), no. 2, 182–194, 325 (Russian). MR 0439758
- Ernst-Ulrich Gekeler, On finite Drinfel′d modules, J. Algebra 141 (1991), no. 1, 187–203. MR 1118323, DOI 10.1016/0021-8693(91)90211-P
- Ernst-Ulrich Gekeler, Frobenius distributions of Drinfeld modules over finite fields, Trans. Amer. Math. Soc. 360 (2008), no. 4, 1695–1721. MR 2366959, DOI 10.1090/S0002-9947-07-04558-8
- David Goss, $L$-series of $t$-motives and Drinfel′d modules, The arithmetic of function fields (Columbus, OH, 1991) Ohio State Univ. Math. Res. Inst. Publ., vol. 2, de Gruyter, Berlin, 1992, pp. 313–402. MR 1196527
- Benedict H. Gross, Arithmetic on elliptic curves with complex multiplication, Lecture Notes in Mathematics, vol. 776, Springer, Berlin, 1980. With an appendix by B. Mazur. MR 563921
- D. R. Hayes, Explicit class field theory for rational function fields, Trans. Amer. Math. Soc. 189 (1974), 77–91. MR 330106, DOI 10.1090/S0002-9947-1974-0330106-6
- David R. Hayes, Explicit class field theory in global function fields, Studies in algebra and number theory, Adv. in Math. Suppl. Stud., vol. 6, Academic Press, New York-London, 1979, pp. 173–217. MR 535766
- David R. Hayes, A brief introduction to Drinfel′d modules, The arithmetic of function fields (Columbus, OH, 1991) Ohio State Univ. Math. Res. Inst. Publ., vol. 2, de Gruyter, Berlin, 1992, pp. 1–32. MR 1196509
- Michael Harris, Nick Shepherd-Barron, and Richard Taylor, A family of Calabi-Yau varieties and potential automorphy, Ann. of Math. (2) 171 (2010), no. 2, 779–813. MR 2630056, DOI 10.4007/annals.2010.171.779
- Vijaya Kumar Murty and John Scherk, Effective versions of the Chebotarev density theorem for function fields, C. R. Acad. Sci. Paris Sér. I Math. 319 (1994), no. 6, 523–528 (English, with English and French summaries). MR 1298275
- Serge Lang and Hale Trotter, Frobenius distributions in $\textrm {GL}_{2}$-extensions, Lecture Notes in Mathematics, Vol. 504, Springer-Verlag, Berlin-New York, 1976. Distribution of Frobenius automorphisms in $\textrm {GL}_{2}$-extensions of the rational numbers. MR 0568299
- Gérard Laumon, Cohomology of Drinfeld modular varieties. Part I, Cambridge Studies in Advanced Mathematics, vol. 41, Cambridge University Press, Cambridge, 1996. Geometry, counting of points and local harmonic analysis. MR 1381898
- M. Ram Murty, V. Kumar Murty, and N. Saradha, Modular forms and the Chebotarev density theorem, Amer. J. Math. 110 (1988), no. 2, 253–281. MR 935007, DOI 10.2307/2374502
- V. Kumar Murty, Explicit formulae and the Lang-Trotter conjecture, Rocky Mountain J. Math. 15 (1985), no. 2, 535–551. Number theory (Winnipeg, Man., 1983). MR 823264, DOI 10.1216/RMJ-1985-15-2-535
- Richard Pink, The Mumford-Tate conjecture for Drinfeld-modules, Publ. Res. Inst. Math. Sci. 33 (1997), no. 3, 393–425. MR 1474696, DOI 10.2977/prims/1195145322
- Richard Pink, Compact subgroups of linear algebraic groups, J. Algebra 206 (1998), no. 2, 438–504. MR 1637068, DOI 10.1006/jabr.1998.7439
- Carl Riehm, The norm $1$ group of a ${\mathfrak {P}}$-adic division algebra, Amer. J. Math. 92 (1970), 499–523. MR 262250, DOI 10.2307/2373336
- Jean-Pierre Serre, Propriétés galoisiennes des points d’ordre fini des courbes elliptiques, Invent. Math. 15 (1972), no. 4, 259–331 (French). MR 387283, DOI 10.1007/BF01405086
- Nicolas Stalder, The semisimplicity conjecture for $A$-motives, Compos. Math. 146 (2010), no. 3, 561–598. MR 2644927, DOI 10.1112/S0010437X09004448
- Henning Stichtenoth, Algebraic function fields and codes, Universitext, Springer-Verlag, Berlin, 1993. MR 1251961
- Lenny Taelman, Artin $t$-motifs, J. Number Theory 129 (2009), no. 1, 142–157. MR 2468475, DOI 10.1016/j.jnt.2008.08.002
- Yuichiro Taguchi, The Tate conjecture for $t$-motives, Proc. Amer. Math. Soc. 123 (1995), no. 11, 3285–3287. MR 1286009, DOI 10.1090/S0002-9939-1995-1286009-5
- Akio Tamagawa, The Tate conjecture and the semisimplicity conjecture for $t$-modules, Sūrikaisekikenkyūsho K\B{o}kyūroku 925 (1995), 89–94. Algebraic number theory and arithmetic geometry (Japanese) (Kyoto, 1994). MR 1417504
- Richard Taylor, Automorphy for some $l$-adic lifts of automorphic mod $l$ Galois representations. II, Publ. Math. Inst. Hautes Études Sci. 108 (2008), 183–239. MR 2470688, DOI 10.1007/s10240-008-0015-2
- Gert-Jan van der Heiden, Weil pairing for Drinfeld modules, Monatsh. Math. 143 (2004), no. 2, 115–143. MR 2097499, DOI 10.1007/s00605-004-0261-4
- Jiu-Kang Yu, A Sato-Tate law for Drinfeld modules, Compositio Math. 138 (2003), no. 2, 189–197. MR 2018826, DOI 10.1023/A:1026122808165
- David Zywina, Explicit class field theory for global function fields, J. Number Theory 133 (2013), no. 3, 1062–1078. MR 2997787, DOI 10.1016/j.jnt.2012.02.009
Additional Information
- David Zywina
- Affiliation: Department of Mathematics, Cornell University, Ithaca, New York 14853
- MR Author ID: 871503
- Email: zywina@math.cornell.edu
- Received by editor(s): May 31, 2013
- Received by editor(s) in revised form: August 5, 2014
- Published electronically: May 29, 2015
- © Copyright 2015 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 368 (2016), 2185-2222
- MSC (2010): Primary 11G09; Secondary 11F80, 11R58
- DOI: https://doi.org/10.1090/tran/6577
- MathSciNet review: 3449237