Metric mean dimension for algebraic actions of Sofic groups
HTML articles powered by AMS MathViewer
- by Ben Hayes PDF
- Trans. Amer. Math. Soc. 369 (2017), 6853-6897 Request permission
Abstract:
We prove that if $\Gamma$ is a sofic group and $A$ is a finitely generated $\mathbb {Z}(\Gamma )$-module, then the metric mean dimension of $\Gamma \curvearrowright \widehat {A},$ in the sense of Hanfeng Li, is equal to the von Neumann-Lück rank of $A.$ This partially extends the results of Hanfeng Li and Bingbing Liang from the case of amenable groups to the case of sofic groups. Additionally we show that the mean dimension of $\Gamma \curvearrowright \widehat {A}$ is the von Neumann-Lück rank of $A$ if $A$ is finitely presented and $\Gamma$ is residually finite. It turns out that our approach naturally leads to a notion of $p$-metric mean dimension, which is in between mean dimension and the usual metric mean dimension. This can be seen as an obstruction to the equality of mean dimension and metric mean dimension. While we cannot decide if mean dimension is the same as metric mean dimension for algebraic actions, we show in the metric case that for all $p$ the $p$-metric mean dimension coincides with the von Neumann-Lück rank of the dual module.References
- Lewis Bowen, Measure conjugacy invariants for actions of countable sofic groups, J. Amer. Math. Soc. 23 (2010), no. 1, 217–245. MR 2552252, DOI 10.1090/S0894-0347-09-00637-7
- Lewis Bowen, Entropy for expansive algebraic actions of residually finite groups, Ergodic Theory Dynam. Systems 31 (2011), no. 3, 703–718. MR 2794944, DOI 10.1017/S0143385710000179
- Lewis Bowen and Hanfeng Li, Harmonic models and spanning forests of residually finite groups, J. Funct. Anal. 263 (2012), no. 7, 1769–1808. MR 2956925, DOI 10.1016/j.jfa.2012.06.015
- Nathanial P. Brown and Narutaka Ozawa, $C^*$-algebras and finite-dimensional approximations, Graduate Studies in Mathematics, vol. 88, American Mathematical Society, Providence, RI, 2008. MR 2391387, DOI 10.1090/gsm/088
- Nhan-Phu Chung and Andreas Thom, Some remarks on the entropy for algebraic actions of amenable groups, Trans. Amer. Math. Soc. 367 (2015), no. 12, 8579–8595. MR 3403066, DOI 10.1090/S0002-9947-2014-06348-4
- Christopher Deninger, Fuglede-Kadison determinants and entropy for actions of discrete amenable groups, J. Amer. Math. Soc. 19 (2006), no. 3, 737–758. MR 2220105, DOI 10.1090/S0894-0347-06-00519-4
- Christopher Deninger and Klaus Schmidt, Expansive algebraic actions of discrete residually finite amenable groups and their entropy, Ergodic Theory Dynam. Systems 27 (2007), no. 3, 769–786. MR 2322178, DOI 10.1017/S0143385706000939
- Ken Dykema, David Kerr, and Mikaël Pichot, Sofic dimension for discrete measured groupoids, Trans. Amer. Math. Soc. 366 (2014), no. 2, 707–748. MR 3130315, DOI 10.1090/S0002-9947-2013-05987-9
- K. Dykema, D. Kerr, and M. Pichot, Orbit equivalence and sofic approximation, arXiv:1102.2556
- Gábor Elek and Endre Szabó, On sofic groups, J. Group Theory 9 (2006), no. 2, 161–171. MR 2220572, DOI 10.1515/JGT.2006.011
- Gábor Elek and Endre Szabó, Sofic representations of amenable groups, Proc. Amer. Math. Soc. 139 (2011), no. 12, 4285–4291. MR 2823074, DOI 10.1090/S0002-9939-2011-11222-X
- Antoine Gournay, Widths of $\ell ^p$ balls, Houston J. Math. 37 (2011), no. 4, 1227–1248. MR 2875268
- Misha Gromov, Topological invariants of dynamical systems and spaces of holomorphic maps. I, Math. Phys. Anal. Geom. 2 (1999), no. 4, 323–415. MR 1742309, DOI 10.1023/A:1009841100168
- Ben Hayes, An $l^p$-version of von Neumann dimension for Banach space representations of sofic groups, J. Funct. Anal. 266 (2014), no. 2, 989–1040. MR 3132735, DOI 10.1016/j.jfa.2013.09.014
- Ben Hayes, An $l^p$-version of von Neumann dimension for Banach space representations of sofic groups II, J. Funct. Anal. 269 (2015), no. 8, 2365–2426. MR 3390007, DOI 10.1016/j.jfa.2015.07.013
- B. Hayes, An $l^{p}$-version of von Neumann dimension for representations of equivalence relations, arXiv:1302.2293
- Ben Hayes, Fuglede-Kadison determinants and sofic entropy, Geom. Funct. Anal. 26 (2016), no. 2, 520–606. MR 3513879, DOI 10.1007/s00039-016-0370-y
- David Kerr and Hanfeng Li, Entropy and the variational principle for actions of sofic groups, Invent. Math. 186 (2011), no. 3, 501–558. MR 2854085, DOI 10.1007/s00222-011-0324-9
- David Kerr and Hanfeng Li, Combinatorial independence and sofic entropy, Commun. Math. Stat. 1 (2013), no. 2, 213–257. MR 3197860, DOI 10.1007/s40304-013-0001-y
- Hanfeng Li, Sofic mean dimension, Adv. Math. 244 (2013), 570–604. MR 3077882, DOI 10.1016/j.aim.2013.05.005
- Hanfeng Li, Compact group automorphisms, addition formulas and Fuglede-Kadison determinants, Ann. of Math. (2) 176 (2012), no. 1, 303–347. MR 2925385, DOI 10.4007/annals.2012.176.1.5
- H. Li and B. Liang, Mean dimension, mean rank, and von Neumann-Lück rank, to appear in J. Reine. Angew. Math.
- Hanfeng Li and Andreas Thom, Entropy, determinants, and $L^2$-torsion, J. Amer. Math. Soc. 27 (2014), no. 1, 239–292. MR 3110799, DOI 10.1090/S0894-0347-2013-00778-X
- Elon Lindenstrauss, Mean dimension, small entropy factors and an embedding theorem, Inst. Hautes Études Sci. Publ. Math. 89 (1999), 227–262 (2000). MR 1793417, DOI 10.1007/BF02698858
- Elon Lindenstrauss and Benjamin Weiss, Mean topological dimension, Israel J. Math. 115 (2000), 1–24. MR 1749670, DOI 10.1007/BF02810577
- Justin Peters, Entropy on discrete abelian groups, Adv. in Math. 33 (1979), no. 1, 1–13. MR 540634, DOI 10.1016/S0001-8708(79)80007-9
- Gilles Pisier, The volume of convex bodies and Banach space geometry, Cambridge Tracts in Mathematics, vol. 94, Cambridge University Press, Cambridge, 1989. MR 1036275, DOI 10.1017/CBO9780511662454
- Douglas Lind, Klaus Schmidt, and Evgeny Verbitskiy, Entropy and growth rate of periodic points of algebraic $\Bbb Z^d$-actions, Dynamical numbers—interplay between dynamical systems and number theory, Contemp. Math., vol. 532, Amer. Math. Soc., Providence, RI, 2010, pp. 195–211. MR 2762141, DOI 10.1090/conm/532/10491
- Douglas Lind, Klaus Schmidt, and Tom Ward, Mahler measure and entropy for commuting automorphisms of compact groups, Invent. Math. 101 (1990), no. 3, 593–629. MR 1062797, DOI 10.1007/BF01231517
- Donald S. Ornstein and Benjamin Weiss, Entropy and isomorphism theorems for actions of amenable groups, J. Analyse Math. 48 (1987), 1–141. MR 910005, DOI 10.1007/BF02790325
- Donald S. Passman, The algebraic structure of group rings, Robert E. Krieger Publishing Co., Inc., Melbourne, FL, 1985. Reprint of the 1977 original. MR 798076
- Vladimir G. Pestov, Hyperlinear and sofic groups: a brief guide, Bull. Symbolic Logic 14 (2008), no. 4, 449–480. MR 2460675, DOI 10.2178/bsl/1231081461
- Klaus Schmidt, Dynamical systems of algebraic origin, Progress in Mathematics, vol. 128, Birkhäuser Verlag, Basel, 1995. MR 1345152
- Masaki Tsukamoto, Deformation of Brody curves and mean dimension, Ergodic Theory Dynam. Systems 29 (2009), no. 5, 1641–1657. MR 2545021, DOI 10.1017/S014338570800076X
- Wolfgang Lück, $L^2$-invariants: theory and applications to geometry and $K$-theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 44, Springer-Verlag, Berlin, 2002. MR 1926649, DOI 10.1007/978-3-662-04687-6
- Wolfgang Lück, Dimension theory of arbitrary modules over finite von Neumann algebras and $L^2$-Betti numbers. I. Foundations, J. Reine Angew. Math. 495 (1998), 135–162. MR 1603853, DOI 10.1515/crll.1998.015
- W. Lück, Approximating $L^2$-invariants by their finite-dimensional analogues, Geom. Funct. Anal. 4 (1994), no. 4, 455–481. MR 1280122, DOI 10.1007/BF01896404
- S. A. Juzvinskiĭ, Calculation of the entropy of a group-endomorphism, Sibirsk. Mat. . 8 (1967), 230–239 (Russian). MR 0214726
Additional Information
- Ben Hayes
- Affiliation: Department of Mathematics, University of California, Los Angeles, 520 Portola Plaza, Los Angeles, California 90095-155
- Address at time of publication: Department of Mathematics, 1326 Stevenson Center, Vanderbilt University, Nashville, Tennessee 37240
- MR Author ID: 1044923
- Email: benjamin.r.hayes@vanderbilt.edu
- Received by editor(s): February 11, 2015
- Received by editor(s) in revised form: June 21, 2015, and September 28, 2015
- Published electronically: March 30, 2017
- Additional Notes: The author is grateful for support from NSF Grants DMS-1161411 and DMS-0900776
- © Copyright 2017 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 369 (2017), 6853-6897
- MSC (2010): Primary 37A35, 37A55, 37B40; Secondary 22D25
- DOI: https://doi.org/10.1090/tran/6834
- MathSciNet review: 3683096