Multiple ergodic theorems for arithmetic sets
HTML articles powered by AMS MathViewer
- by Nikos Frantzikinakis and Bernard Host PDF
- Trans. Amer. Math. Soc. 369 (2017), 7085-7105 Request permission
Abstract:
We establish results with an arithmetic flavor that generalize the polynomial multidimensional Szemerédi theorem and related multiple recurrence and convergence results in ergodic theory. For instance, we show that in all these statements we can restrict the implicit parameter $n$ to those integers that have an even number of distinct prime factors or satisfy any other congruence condition. In order to obtain these refinements we study the limiting behavior of some closely related multiple ergodic averages with weights given by appropriately chosen multiplicative functions. These averages are then analyzed using a recent structural result for bounded multiplicative functions proved by the authors.References
- E. el Abdalaoui, J. Kułaga-Przymus, M. Lemańczyk, and T. de la Rue, The Chowla and the Sarnak conjectures from ergodic theory point of view, to appear in Discrete Contin. Dyn. Syst., arXiv:1410.1673.
- Antal Balog, Andrew Granville, and Kannan Soundararajan, Multiplicative functions in arithmetic progressions, Ann. Math. Qué. 37 (2013), no. 1, 3–30 (English, with English and French summaries). MR 3117735, DOI 10.1007/s40316-013-0001-z
- J. Bourgain, Double recurrence and almost sure convergence, J. Reine Angew. Math. 404 (1990), 140–161. MR 1037434, DOI 10.1515/crll.1990.404.140
- V. Bergelson and A. Leibman, Polynomial extensions of van der Waerden’s and Szemerédi’s theorems, J. Amer. Math. Soc. 9 (1996), no. 3, 725–753. MR 1325795, DOI 10.1090/S0894-0347-96-00194-4
- Hédi Daboussi, Fonctions multiplicatives presque périodiques B, Journées Arithmétiques de Bordeaux (Conf., Univ. Bordeaux, Bordeaux, 1974) Astérisque, No. 24–25, Soc. Math. France, Paris, 1975, pp. 321–324 (French). D’après un travail commun avec Hubert Delange. MR 0374074
- Hédi Daboussi and Hubert Delange, Quelques propriétés des fonctions multiplicatives de module au plus égal à $1$, C. R. Acad. Sci. Paris Sér. A 278 (1974), 657–660 (French). MR 332702
- H. Davenport, On some infinite series involving arithmetical functions II, Quart. J. Math. Oxf. 8 (1937), 313–320.
- P. D. T. A. Elliott, Probabilistic number theory. I, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 239, Springer-Verlag, New York-Berlin, 1979. Mean-value theorems. MR 551361, DOI 10.1007/978-1-4612-9989-9
- Nikos Frantzikinakis, Multiple correlation sequences and nilsequences, Invent. Math. 202 (2015), no. 2, 875–892. MR 3418246, DOI 10.1007/s00222-015-0579-7
- Nikos Frantzikinakis and Bernard Host, Asymptotics for multilinear averages of multiplicative functions, Math. Proc. Cambridge Philos. Soc. 161 (2016), no. 1, 87–101. MR 3505671, DOI 10.1017/S0305004116000116
- Nikos Frantzikinakis and Bernard Host, Higher order Fourier analysis of multiplicative functions and applications, J. Amer. Math. Soc. 30 (2017), no. 1, 67–157. MR 3556289, DOI 10.1090/jams/857
- Nikos Frantzikinakis, Bernard Host, and Bryna Kra, The polynomial multidimensional Szemerédi theorem along shifted primes, Israel J. Math. 194 (2013), no. 1, 331–348. MR 3047073, DOI 10.1007/s11856-012-0132-y
- Harry Furstenberg, Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions, J. Analyse Math. 31 (1977), 204–256. MR 498471, DOI 10.1007/BF02813304
- H. Furstenberg and Y. Katznelson, An ergodic Szemerédi theorem for commuting transformations, J. Analyse Math. 34 (1978), 275–291 (1979). MR 531279, DOI 10.1007/BF02790016
- H. Furstenberg and Y. Katznelson, An ergodic Szemerédi theorem for IP-systems and combinatorial theory, J. Analyse Math. 45 (1985), 117–168. MR 833409, DOI 10.1007/BF02792547
- W. T. Gowers, A new proof of Szemerédi’s theorem, Geom. Funct. Anal. 11 (2001), no. 3, 465–588. MR 1844079, DOI 10.1007/s00039-001-0332-9
- Andrew Granville and K. Soundararajan, Large character sums: pretentious characters and the Pólya-Vinogradov theorem, J. Amer. Math. Soc. 20 (2007), no. 2, 357–384. MR 2276774, DOI 10.1090/S0894-0347-06-00536-4
- A. Granville and K. Soundararajan, Multiplicative number theory: The pretentious approach, book manuscript in preparation.
- G. Halász, Über die Mittelwerte multiplikativer zahlentheoretischer Funktionen, Acta Math. Acad. Sci. Hungar. 19 (1968), 365–403 (German). MR 230694, DOI 10.1007/BF01894515
- R. R. Hall, A sharp inequality of Halász type for the mean value of a multiplicative arithmetic function, Mathematika 42 (1995), no. 1, 144–157. MR 1346679, DOI 10.1112/S0025579300011426
- I. Kátai, A remark on a theorem of H. Daboussi, Acta Math. Hungar. 47 (1986), no. 1-2, 223–225. MR 836415, DOI 10.1007/BF01949145
- A. Leibman, Multiple recurrence theorem for measure preserving actions of a nilpotent group, Geom. Funct. Anal. 8 (1998), no. 5, 853–931. MR 1650102, DOI 10.1007/s000390050077
- Terence Tao, Norm convergence of multiple ergodic averages for commuting transformations, Ergodic Theory Dynam. Systems 28 (2008), no. 2, 657–688. MR 2408398, DOI 10.1017/S0143385708000011
- Miguel N. Walsh, Norm convergence of nilpotent ergodic averages, Ann. of Math. (2) 175 (2012), no. 3, 1667–1688. MR 2912715, DOI 10.4007/annals.2012.175.3.15
- E. Wirsing, Das asymptotische Verhalten von Summen über multiplikative Funktionen. II, Acta Math. Acad. Sci. Hungar. 18 (1967), 411–467 (German). MR 223318, DOI 10.1007/BF02280301
Additional Information
- Nikos Frantzikinakis
- Affiliation: Department of Mathematics, Voutes University Campus, University of Crete, Heraklion 71003, Greece
- MR Author ID: 712393
- ORCID: 0000-0001-7392-5387
- Email: frantzikinakis@gmail.com
- Bernard Host
- Affiliation: Université Paris-Est Marne-la-Vallée, Laboratoire d’analyse et de mathématiques appliquées, UMR CNRS 8050, 5 Bd Descartes, 77454 Marne la Vallée Cedex, France
- MR Author ID: 88605
- Email: bernard.host@u-pem.fr
- Received by editor(s): March 27, 2015
- Received by editor(s) in revised form: March 30, 2015, and November 7, 2015
- Published electronically: March 30, 2017
- © Copyright 2017 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 369 (2017), 7085-7105
- MSC (2010): Primary 37A45; Secondary 05D10, 11B30, 11N37, 28D05
- DOI: https://doi.org/10.1090/tran/6870
- MathSciNet review: 3683104