## Immersed self-shrinkers

HTML articles powered by AMS MathViewer

- by Gregory Drugan and Stephen J. Kleene PDF
- Trans. Amer. Math. Soc.
**369**(2017), 7213-7250 Request permission

## Abstract:

We construct infinitely many complete, immersed self-shrinkers with rotational symmetry for each of the following topological types: the sphere, the plane, the cylinder, and the torus.## References

- U. Abresch and J. Langer,
*The normalized curve shortening flow and homothetic solutions*, J. Differential Geom.**23**(1986), no. 2, 175–196. MR**845704**, DOI 10.4310/jdg/1214440025 - F. J. Almgren Jr.,
*Some interior regularity theorems for minimal surfaces and an extension of Bernstein’s theorem*, Ann. of Math. (2)**84**(1966), 277–292. MR**200816**, DOI 10.2307/1970520 - Sigurd B. Angenent,
*Shrinking doughnuts*, Nonlinear diffusion equations and their equilibrium states, 3 (Gregynog, 1989) Progr. Nonlinear Differential Equations Appl., vol. 7, Birkhäuser Boston, Boston, MA, 1992, pp. 21–38. MR**1167827** - M. S. Baouendi and C. Goulaouic,
*Singular nonlinear Cauchy problems*, J. Differential Equations**22**(1976), no. 2, 268–291. MR**435564**, DOI 10.1016/0022-0396(76)90028-0 - Simon Brendle,
*Embedded self-similar shrinkers of genus 0*, Ann. of Math. (2)**183**(2016), no. 2, 715–728. MR**3450486**, DOI 10.4007/annals.2016.183.2.6 - David L. Chopp,
*Computation of self-similar solutions for mean curvature flow*, Experiment. Math.**3**(1994), no. 1, 1–15. MR**1302814**, DOI 10.1080/10586458.1994.10504572 - Tobias H. Colding and William P. Minicozzi II,
*Generic mean curvature flow I: generic singularities*, Ann. of Math. (2)**175**(2012), no. 2, 755–833. MR**2993752**, DOI 10.4007/annals.2012.175.2.7 - Manfredo P. do Carmo,
*Differential geometry of curves and surfaces*, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1976. Translated from the Portuguese. MR**0394451** - G. Drugan,
*Embedded $S^2$ self-shrinkers with rotational symmetry*, preprint. - Gregory Drugan,
*An immersed $S^2$ self-shrinker*, Trans. Amer. Math. Soc.**367**(2015), no. 5, 3139–3159. MR**3314804**, DOI 10.1090/S0002-9947-2014-06051-0 - Klaus Ecker,
*Regularity theory for mean curvature flow*, Progress in Nonlinear Differential Equations and their Applications, vol. 57, Birkhäuser Boston, Inc., Boston, MA, 2004. MR**2024995**, DOI 10.1007/978-0-8176-8210-1 - Klaus Ecker and Gerhard Huisken,
*Mean curvature evolution of entire graphs*, Ann. of Math. (2)**130**(1989), no. 3, 453–471. MR**1025164**, DOI 10.2307/1971452 - C. L. Epstein and M. I. Weinstein,
*A stable manifold theorem for the curve shortening equation*, Comm. Pure Appl. Math.**40**(1987), no. 1, 119–139. MR**865360**, DOI 10.1002/cpa.3160400106 - M. Gage and R. S. Hamilton,
*The heat equation shrinking convex plane curves*, J. Differential Geom.**23**(1986), no. 1, 69–96. MR**840401**, DOI 10.4310/jdg/1214439902 - David Gilbarg and Neil S. Trudinger,
*Elliptic partial differential equations of second order*, Classics in Mathematics, Springer-Verlag, Berlin, 2001. Reprint of the 1998 edition. MR**1814364**, DOI 10.1007/978-3-642-61798-0 - Matthew A. Grayson,
*The heat equation shrinks embedded plane curves to round points*, J. Differential Geom.**26**(1987), no. 2, 285–314. MR**906392** - Hoeskuldur P. Halldorsson,
*Self-similar solutions to the curve shortening flow*, Trans. Amer. Math. Soc.**364**(2012), no. 10, 5285–5309. MR**2931330**, DOI 10.1090/S0002-9947-2012-05632-7 - Philip Hartman,
*Ordinary differential equations*, John Wiley & Sons, Inc., New York-London-Sydney, 1964. MR**0171038** - Heinz Hopf,
*Differential geometry in the large*, 2nd ed., Lecture Notes in Mathematics, vol. 1000, Springer-Verlag, Berlin, 1989. Notes taken by Peter Lax and John W. Gray; With a preface by S. S. Chern; With a preface by K. Voss. MR**1013786**, DOI 10.1007/3-540-39482-6 - Gerhard Huisken,
*Asymptotic behavior for singularities of the mean curvature flow*, J. Differential Geom.**31**(1990), no. 1, 285–299. MR**1030675** - N. Kapouleas, S. J. Kleene, and N. M. Møller,
*Mean curvature self-shrinkers of high genus: Non-compact examples*, preprint. Available at arXiv:1106.5454. - Stephen Kleene and Niels Martin Møller,
*Self-shrinkers with a rotational symmetry*, Trans. Amer. Math. Soc.**366**(2014), no. 8, 3943–3963. MR**3206448**, DOI 10.1090/S0002-9947-2014-05721-8 - N. M. Møller,
*Closed self-shrinking surfaces in $R^3$ via the torus*, preprint. Available at arXiv:1111.7318. - Xuan Hien Nguyen,
*Construction of complete embedded self-similar surfaces under mean curvature flow. I*, Trans. Amer. Math. Soc.**361**(2009), no. 4, 1683–1701. MR**2465812**, DOI 10.1090/S0002-9947-08-04748-X - Xuan Hien Nguyen,
*Construction of complete embedded self-similar surfaces under mean curvature flow. II*, Adv. Differential Equations**15**(2010), no. 5-6, 503–530. MR**2643233** - Xuan Hien Nguyen,
*Construction of complete embedded self-similar surfaces under mean curvature flow, Part III*, Duke Math. J.**163**(2014), no. 11, 2023–2056. MR**3263027**, DOI 10.1215/00127094-2795108 - Lu Wang,
*A Bernstein type theorem for self-similar shrinkers*, Geom. Dedicata**151**(2011), 297–303. MR**2780753**, DOI 10.1007/s10711-010-9535-2

## Additional Information

**Gregory Drugan**- Affiliation: Department of Mathematics, University of Washington, Seattle, Washington 98195
- MR Author ID: 1097133
- Email: drugan@math.washington.edu
**Stephen J. Kleene**- Affiliation: Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
- MR Author ID: 915857
- Email: skleene@math.mit.edu
- Received by editor(s): June 22, 2013
- Received by editor(s) in revised form: November 12, 2015, December 28, 2015, and January 4, 2016
- Published electronically: June 27, 2017
- Additional Notes: The first author was partially supported by NSF RTG 0838212.

The second author was partially supported by NSF DMS 1004646. - © Copyright 2017 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**369**(2017), 7213-7250 - MSC (2010): Primary 53C44, 53C42
- DOI: https://doi.org/10.1090/tran/6907
- MathSciNet review: 3683108