Bridge trisections of knotted surfaces in $S^4$
HTML articles powered by AMS MathViewer
- by Jeffrey Meier and Alexander Zupan PDF
- Trans. Amer. Math. Soc. 369 (2017), 7343-7386 Request permission
Abstract:
We introduce bridge trisections of knotted surfaces in the 4–sphere. This description is inspired by the work of Gay and Kirby on trisections of 4–manifolds and extends the classical concept of bridge splittings of links in the 3–sphere to four dimensions. We prove that every knotted surface in the 4–sphere admits a bridge trisection (a decomposition into three simple pieces) and that any two bridge trisections for a fixed surface are related by a sequence of stabilizations and destabilizations. We also introduce a corresponding diagrammatic representation of knotted surfaces and describe a set of moves that suffice to pass between two diagrams for the same surface. Using these decompositions, we define a new complexity measure: the bridge number of a knotted surface. In addition, we classify bridge trisections with low complexity, we relate bridge trisections to the fundamental groups of knotted surface complements, and we prove that there exist knotted surfaces with arbitrarily large bridge number.References
- Rob Kirby (ed.), Problems in low-dimensional topology, Geometric topology (Athens, GA, 1993) AMS/IP Stud. Adv. Math., vol. 2, Amer. Math. Soc., Providence, RI, 1997, pp. 35–473. MR 1470751, DOI 10.1090/amsip/002.2/02
- Emil Artin, Zur Isotopie zweidimensionaler Flächen im $R_4$, Abh. Math. Sem. Univ. Hamburg 4 (1925), no. 1, 174–177 (German). MR 3069446, DOI 10.1007/BF02950724
- David Bachman and Saul Schleimer, Thin position for tangles, J. Knot Theory Ramifications 12 (2003), no. 1, 117–122. MR 1953627, DOI 10.1142/S0218216503002342
- Michel Boileau and Bruno Zimmermann, The $\pi$-orbifold group of a link, Math. Z. 200 (1989), no. 2, 187–208. MR 978294, DOI 10.1007/BF01230281
- J. Scott Carter and Masahico Saito, Knotted surfaces and their diagrams, Mathematical Surveys and Monographs, vol. 55, American Mathematical Society, Providence, RI, 1998. MR 1487374, DOI 10.1090/surv/055
- Scott Carter, Seiichi Kamada, and Masahico Saito, Surfaces in 4-space, Encyclopaedia of Mathematical Sciences, vol. 142, Springer-Verlag, Berlin, 2004. Low-Dimensional Topology, III. MR 2060067, DOI 10.1007/978-3-662-10162-9
- S. M. Finashin, M. Kreck, and O. Ya. Viro, Exotic knottings of surfaces in the $4$-sphere, Bull. Amer. Math. Soc. (N.S.) 17 (1987), no. 2, 287–290. MR 903734, DOI 10.1090/S0273-0979-1987-15562-5
- S. M. Finashin, M. Kreck, and O. Ya. Viro, Nondiffeomorphic but homeomorphic knottings of surfaces in the $4$-sphere, Topology and geometry—Rohlin Seminar, Lecture Notes in Math., vol. 1346, Springer, Berlin, 1988, pp. 157–198. MR 970078, DOI 10.1007/BFb0082777
- Michael H. Freedman, The disk theorem for four-dimensional manifolds, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Warsaw, 1983) PWN, Warsaw, 1984, pp. 647–663. MR 804721
- David Gay and Robion Kirby, Trisecting 4-manifolds, Geom. Topol. 20 (2016), no. 6, 3097–3132. MR 3590351, DOI 10.2140/gt.2016.20.3097
- Robert E. Gompf and András I. Stipsicz, $4$-manifolds and Kirby calculus, Graduate Studies in Mathematics, vol. 20, American Mathematical Society, Providence, RI, 1999. MR 1707327, DOI 10.1090/gsm/020
- Andrew Haas and Perry Susskind, The geometry of the hyperelliptic involution in genus two, Proc. Amer. Math. Soc. 105 (1989), no. 1, 159–165. MR 930247, DOI 10.1090/S0002-9939-1989-0930247-2
- Chuichiro Hayashi, Stable equivalence of Heegaard splittings of $1$-submanifolds in $3$-manifolds, Kobe J. Math. 15 (1998), no. 2, 147–156. MR 1686582
- Jonathan A. Hillman and Akio Kawauchi, Unknotting orientable surfaces in the $4$-sphere, J. Knot Theory Ramifications 4 (1995), no. 2, 213–224. MR 1331748, DOI 10.1142/S0218216595000119
- Fujitsugu Hosokawa and Akio Kawauchi, Proposals for unknotted surfaces in four-spaces, Osaka Math. J. 16 (1979), no. 1, 233–248. MR 527028
- Seiichi Kamada, Braid and knot theory in dimension four, Mathematical Surveys and Monographs, vol. 95, American Mathematical Society, Providence, RI, 2002. MR 1900979, DOI 10.1090/surv/095
- Akio Kawauchi, Splitting a 4-manifold with infinite cyclic fundamental group, revised, J. Knot Theory Ramifications 22 (2013), no. 14, 1350081, 9. MR 3190119, DOI 10.1142/S0218216513500818
- Cherry Kearton and Vitaliy Kurlin, All 2-dimensional links in 4-space live inside a universal 3-dimensional polyhedron, Algebr. Geom. Topol. 8 (2008), no. 3, 1223–1247. MR 2443242, DOI 10.2140/agt.2008.8.1223
- François Laudenbach and Valentin Poénaru, A note on $4$-dimensional handlebodies, Bull. Soc. Math. France 100 (1972), 337–344. MR 317343, DOI 10.24033/bsmf.1741
- Terry Lawson, Detecting the standard embedding of $\textbf {R}\textrm {P}^{2}$ in $S^{4}$, Math. Ann. 267 (1984), no. 4, 439–448. MR 742889, DOI 10.1007/BF01455961
- S. J. Lomonaco Jr., The homotopy groups of knots. I. How to compute the algebraic $2$-type, Pacific J. Math. 95 (1981), no. 2, 349–390. MR 632192, DOI 10.2140/pjm.1981.95.349
- W. S. Massey, Proof of a conjecture of Whitney, Pacific J. Math. 31 (1969), 143–156. MR 250331, DOI 10.2140/pjm.1969.31.143
- Jeffrey Meier, Trent Schirmer, and Alexander Zupan, Classification of trisections and the generalized property R conjecture, Proc. Amer. Math. Soc. 144 (2016), no. 11, 4983–4997. MR 3544545, DOI 10.1090/proc/13105
- J. Meier and A. Zupan, Genus two trisections are standard, to appear in Geom. Topol.
- Jean-Pierre Otal, Présentations en ponts du nœud trivial, C. R. Acad. Sci. Paris Sér. I Math. 294 (1982), no. 16, 553–556 (French, with English summary). MR 679942
- Dennis Roseman, Reidemeister-type moves for surfaces in four-dimensional space, Knot theory (Warsaw, 1995) Banach Center Publ., vol. 42, Polish Acad. Sci. Inst. Math., Warsaw, 1998, pp. 347–380. MR 1634466
- Markus Rost and Heiner Zieschang, Meridional generators and plat presentations of torus links, J. London Math. Soc. (2) 35 (1987), no. 3, 551–562. MR 889376, DOI 10.1112/jlms/s2-35.3.551
- Horst Schubert, Über eine numerische Knoteninvariante, Math. Z. 61 (1954), 245–288 (German). MR 72483, DOI 10.1007/BF01181346
- Frank J. Swenton, On a calculus for 2-knots and surfaces in 4-space, J. Knot Theory Ramifications 10 (2001), no. 8, 1133–1141. MR 1871221, DOI 10.1142/S0218216501001359
- Katsuyuki Yoshikawa, An enumeration of surfaces in four-space, Osaka J. Math. 31 (1994), no. 3, 497–522. MR 1309400
- E. C. Zeeman, Twisting spun knots, Trans. Amer. Math. Soc. 115 (1965), 471–495. MR 195085, DOI 10.1090/S0002-9947-1965-0195085-8
- Alexander Zupan, Bridge and pants complexities of knots, J. Lond. Math. Soc. (2) 87 (2013), no. 1, 43–68. MR 3022706, DOI 10.1112/jlms/jds030
Additional Information
- Jeffrey Meier
- Affiliation: Department of Mathematics, Indiana University, Bloomington, Indiana 47408
- MR Author ID: 849257
- Email: jlmeier@indiana.edu
- Alexander Zupan
- Affiliation: Department of Mathematics, University of Nebraska-Lincoln, Lincoln, Nebraska 68588
- MR Author ID: 863648
- Email: zupan@unl.edu
- Received by editor(s): August 17, 2015
- Received by editor(s) in revised form: March 7, 2016
- Published electronically: May 30, 2017
- Additional Notes: The first author was supported by NSF grant DMS-1400543
The second author was supported by NSF grant DMS-1203988 - © Copyright 2017 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 369 (2017), 7343-7386
- MSC (2010): Primary 57M25, 57Q45
- DOI: https://doi.org/10.1090/tran/6934
- MathSciNet review: 3683111