A refined Beilinson–Bloch conjecture for motives of modular forms
HTML articles powered by AMS MathViewer
- by Matteo Longo and Stefano Vigni PDF
- Trans. Amer. Math. Soc. 369 (2017), 7301-7342 Request permission
Abstract:
We propose a refined version of the Beilinson–Bloch conjecture for the motive associated with a modular form of even weight. This conjecture relates the dimension of the image of the relevant $p$-adic Abel–Jacobi map to certain combinations of Heegner cycles on Kuga–Sato varieties. We prove theorems in the direction of the conjecture and, in doing so, obtain higher weight analogues of results for elliptic curves due to Darmon.References
- A. A. Beĭlinson, Higher regulators and values of $L$-functions, Current problems in mathematics, Vol. 24, Itogi Nauki i Tekhniki, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1984, pp. 181–238 (Russian). MR 760999
- Massimo Bertolini and Henri Darmon, Derived heights and generalized Mazur-Tate regulators, Duke Math. J. 76 (1994), no. 1, 75–111. MR 1301187, DOI 10.1215/S0012-7094-94-07604-7
- Massimo Bertolini and Henri Darmon, Derived $p$-adic heights, Amer. J. Math. 117 (1995), no. 6, 1517–1554. MR 1363078, DOI 10.2307/2375029
- M. Bertolini and H. Darmon, Heegner points on Mumford-Tate curves, Invent. Math. 126 (1996), no. 3, 413–456. MR 1419003, DOI 10.1007/s002220050105
- Massimo Bertolini and Henri Darmon, Heegner points, $p$-adic $L$-functions, and the Cerednik-Drinfeld uniformization, Invent. Math. 131 (1998), no. 3, 453–491. MR 1614543, DOI 10.1007/s002220050211
- Massimo Bertolini and Henri Darmon, $p$-adic periods, $p$-adic $L$-functions, and the $p$-adic uniformization of Shimura curves, Duke Math. J. 98 (1999), no. 2, 305–334. MR 1695201, DOI 10.1215/S0012-7094-99-09809-5
- Massimo Bertolini and Henri Darmon, The $p$-adic $L$-functions of modular elliptic curves, Mathematics unlimited—2001 and beyond, Springer, Berlin, 2001, pp. 109–170. MR 1852156
- M. Bertolini and H. Darmon, Iwasawa’s main conjecture for elliptic curves over anticyclotomic $\Bbb Z_p$-extensions, Ann. of Math. (2) 162 (2005), no. 1, 1–64. MR 2178960, DOI 10.4007/annals.2005.162.1
- Massimo Bertolini, Henri Darmon, and Kartik Prasanna, Generalized Heegner cycles and $p$-adic Rankin $L$-series, Duke Math. J. 162 (2013), no. 6, 1033–1148. With an appendix by Brian Conrad. MR 3053566, DOI 10.1215/00127094-2142056
- Amnon Besser, On the finiteness of Sh for motives associated to modular forms, Doc. Math. 2 (1997), 31–46. MR 1443065
- Spencer Bloch, Algebraic cycles and values of $L$-functions, J. Reine Angew. Math. 350 (1984), 94–108. MR 743535, DOI 10.1515/crll.1984.350.94
- Spencer Bloch and Kazuya Kato, $L$-functions and Tamagawa numbers of motives, The Grothendieck Festschrift, Vol. I, Progr. Math., vol. 86, Birkhäuser Boston, Boston, MA, 1990, pp. 333–400. MR 1086888
- Daniel Bump, Solomon Friedberg, and Jeffrey Hoffstein, Nonvanishing theorems for $L$-functions of modular forms and their derivatives, Invent. Math. 102 (1990), no. 3, 543–618. MR 1074487, DOI 10.1007/BF01233440
- David Burns, Congruences between derivatives of abelian $L$-functions at $s=0$, Invent. Math. 169 (2007), no. 3, 451–499. MR 2336038, DOI 10.1007/s00222-007-0052-3
- D. Burns and M. Flach, Tamagawa numbers for motives with (non-commutative) coefficients, Doc. Math. 6 (2001), 501–570. MR 1884523
- Francesc Castella, Heegner cycles and higher weight specializations of big Heegner points, Math. Ann. 356 (2013), no. 4, 1247–1282. MR 3072800, DOI 10.1007/s00208-012-0871-4
- Masataka Chida and Ming-Lun Hsieh, On the anticyclotomic Iwasawa main conjecture for modular forms, Compos. Math. 151 (2015), no. 5, 863–897. MR 3347993, DOI 10.1112/S0010437X14007787
- Henri Darmon, A refined conjecture of Mazur-Tate type for Heegner points, Invent. Math. 110 (1992), no. 1, 123–146. MR 1181819, DOI 10.1007/BF01231327
- Henri Darmon, Thaine’s method for circular units and a conjecture of Gross, Canad. J. Math. 47 (1995), no. 2, 302–317. MR 1335080, DOI 10.4153/CJM-1995-016-6
- Pierre Deligne, Formes modulaires et représentations $l$-adiques, Séminaire Bourbaki. Vol. 1968/69: Exposés 347–363, Lecture Notes in Math., vol. 175, Springer, Berlin, 1971, pp. Exp. No. 355, 139–172 (French). MR 3077124
- Fred Diamond, Matthias Flach, and Li Guo, The Tamagawa number conjecture of adjoint motives of modular forms, Ann. Sci. École Norm. Sup. (4) 37 (2004), no. 5, 663–727 (English, with English and French summaries). MR 2103471, DOI 10.1016/j.ansens.2004.09.001
- Olivier Fouquet, Dihedral Iwasawa theory of nearly ordinary quaternionic automorphic forms, Compos. Math. 149 (2013), no. 3, 356–416. MR 3040744, DOI 10.1112/S0010437X12000619
- Benedict H. Gross, On the values of abelian $L$-functions at $s=0$, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 35 (1988), no. 1, 177–197. MR 931448
- Benjamin Howard, Variation of Heegner points in Hida families, Invent. Math. 167 (2007), no. 1, 91–128. MR 2264805, DOI 10.1007/s00222-006-0007-0
- Uwe Jannsen, Mixed motives and algebraic $K$-theory, Lecture Notes in Mathematics, vol. 1400, Springer-Verlag, Berlin, 1990. With appendices by S. Bloch and C. Schoen. MR 1043451, DOI 10.1007/BFb0085080
- Matteo Longo, On the Birch and Swinnerton-Dyer conjecture for modular elliptic curves over totally real fields, Ann. Inst. Fourier (Grenoble) 56 (2006), no. 3, 689–733 (English, with English and French summaries). MR 2244227, DOI 10.5802/aif.2197
- Matteo Longo, Euler systems obtained from congruences between Hilbert modular forms, Rend. Semin. Mat. Univ. Padova 118 (2007), 1–34. MR 2378387
- Matteo Longo, Anticyclotomic Iwasawa’s main conjecture for Hilbert modular forms, Comment. Math. Helv. 87 (2012), no. 2, 303–353. MR 2914851, DOI 10.4171/CMH/255
- Matteo Longo, Victor Rotger, and Stefano Vigni, Special values of $L$-functions and the arithmetic of Darmon points, J. Reine Angew. Math. 684 (2013), 199–244. MR 3181561, DOI 10.1515/crelle-2011-0005
- Matteo Longo and Stefano Vigni, On the vanishing of Selmer groups for elliptic curves over ring class fields, J. Number Theory 130 (2010), no. 1, 128–163. MR 2569846, DOI 10.1016/j.jnt.2009.07.004
- Matteo Longo and Stefano Vigni, An irreducibility criterion for group representations, with arithmetic applications, Proc. Amer. Math. Soc. 138 (2010), no. 10, 3437–3447. MR 2661544, DOI 10.1090/S0002-9939-2010-10485-9
- Matteo Longo and Stefano Vigni, Quaternion algebras, Heegner points and the arithmetic of Hida families, Manuscripta Math. 135 (2011), no. 3-4, 273–328. MR 2813438, DOI 10.1007/s00229-010-0409-6
- Matteo Longo and Stefano Vigni, Vanishing of special values and central derivatives in Hida families, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 13 (2014), no. 3, 859–888. MR 3331531
- Barry Mazur and Karl Rubin, Kolyvagin systems, Mem. Amer. Math. Soc. 168 (2004), no. 799, viii+96. MR 2031496, DOI 10.1090/memo/0799
- Barry Mazur and Karl Rubin, Refined class number formulas and Kolyvagin systems, Compos. Math. 147 (2011), no. 1, 56–74. MR 2771126, DOI 10.1112/S0010437X1000494X
- B. Mazur and J. Tate, Canonical height pairings via biextensions, Arithmetic and geometry, Vol. I, Progr. Math., vol. 35, Birkhäuser Boston, Boston, MA, 1983, pp. 195–237. MR 717595
- B. Mazur and J. Tate, Refined conjectures of the “Birch and Swinnerton-Dyer type”, Duke Math. J. 54 (1987), no. 2, 711–750. MR 899413, DOI 10.1215/S0012-7094-87-05431-7
- J. S. Milne, Arithmetic duality theorems, Perspectives in Mathematics, vol. 1, Academic Press, Inc., Boston, MA, 1986. MR 881804
- Jan Nekovář, Kolyvagin’s method for Chow groups of Kuga-Sato varieties, Invent. Math. 107 (1992), no. 1, 99–125. MR 1135466, DOI 10.1007/BF01231883
- Jan Nekovář, On $p$-adic height pairings, Séminaire de Théorie des Nombres, Paris, 1990–91, Progr. Math., vol. 108, Birkhäuser Boston, Boston, MA, 1993, pp. 127–202. MR 1263527, DOI 10.1007/s10107-005-0696-y
- Jan Nekovář, On the $p$-adic height of Heegner cycles, Math. Ann. 302 (1995), no. 4, 609–686. MR 1343644, DOI 10.1007/BF01444511
- Jan Nekovář, $p$-adic Abel-Jacobi maps and $p$-adic heights, The arithmetic and geometry of algebraic cycles (Banff, AB, 1998) CRM Proc. Lecture Notes, vol. 24, Amer. Math. Soc., Providence, RI, 2000, pp. 367–379. MR 1738867, DOI 10.1090/crmp/024/18
- Jan Nekovář, Selmer complexes, Astérisque 310 (2006), viii+559 (English, with English and French summaries). MR 2333680
- Jan Nekovář, The Euler system method for CM points on Shimura curves, $L$-functions and Galois representations, London Math. Soc. Lecture Note Ser., vol. 320, Cambridge Univ. Press, Cambridge, 2007, pp. 471–547. MR 2392363, DOI 10.1017/CBO9780511721267.014
- Jan Nekovář, Level raising and anticyclotomic Selmer groups for Hilbert modular forms of weight two, Canad. J. Math. 64 (2012), no. 3, 588–668. MR 2962318, DOI 10.4153/CJM-2011-077-6
- Wieslawa Niziol, On the image of $p$-adic regulators, Invent. Math. 127 (1997), no. 2, 375–400. MR 1427624, DOI 10.1007/s002220050125
- K. Ota, Kato’s Euler system and the Mazur–Tate refined conjecture of BSD type, to appear in Amer. J. Math., arXiv:1509.00682.
- Kenneth A. Ribet, On $l$-adic representations attached to modular forms. II, Glasgow Math. J. 27 (1985), 185–194. MR 819838, DOI 10.1017/S0017089500006170
- Karl Rubin, A Stark conjecture “over $\mathbf Z$” for abelian $L$-functions with multiple zeros, Ann. Inst. Fourier (Grenoble) 46 (1996), no. 1, 33–62 (English, with English and French summaries). MR 1385509, DOI 10.5802/aif.1505
- Takeshi Saito, Modular forms and $p$-adic Hodge theory, Invent. Math. 129 (1997), no. 3, 607–620. MR 1465337, DOI 10.1007/s002220050175
- Takeshi Saito, Weight-monodromy conjecture for $l$-adic representations associated to modular forms. A supplement to: “Modular forms and $p$-adic Hodge theory” [Invent. Math. 129 (1997), no. 3, 607–620; MR1465337 (98g:11060)], The arithmetic and geometry of algebraic cycles (Banff, AB, 1998) NATO Sci. Ser. C Math. Phys. Sci., vol. 548, Kluwer Acad. Publ., Dordrecht, 2000, pp. 427–431. MR 1744955
- Peter Schneider, Introduction to the Beĭlinson conjectures, Beĭlinson’s conjectures on special values of $L$-functions, Perspect. Math., vol. 4, Academic Press, Boston, MA, 1988, pp. 1–35. MR 944989
- A. J. Scholl, Motives for modular forms, Invent. Math. 100 (1990), no. 2, 419–430. MR 1047142, DOI 10.1007/BF01231194
- Jean-Pierre Serre, Local fields, Graduate Texts in Mathematics, vol. 67, Springer-Verlag, New York-Berlin, 1979. Translated from the French by Marvin Jay Greenberg. MR 554237, DOI 10.1007/978-1-4757-5673-9
- Shouwu Zhang, Heights of Heegner cycles and derivatives of $L$-series, Invent. Math. 130 (1997), no. 1, 99–152. MR 1471887, DOI 10.1007/s002220050179
- Wei Zhang, Selmer groups and the indivisibility of Heegner points, Camb. J. Math. 2 (2014), no. 2, 191–253. MR 3295917, DOI 10.4310/CJM.2014.v2.n2.a2
Additional Information
- Matteo Longo
- Affiliation: Dipartimento di Matematica, Università di Padova, Via Trieste 63, 35121 Padova, Italy
- MR Author ID: 790759
- Email: mlongo@math.unipd.it
- Stefano Vigni
- Affiliation: Dipartimento di Matematica, Università di Genova, Via Dodecaneso 35, 16146 Genova, Italy
- MR Author ID: 842395
- Email: vigni@dima.unige.it
- Received by editor(s): February 1, 2016
- Published electronically: May 5, 2017
- Additional Notes: The authors were partially supported by PRIN 2010–11 “Arithmetic Algebraic Geometry and Number Theory”. The first author was also partially supported by PRAT 2013 “Arithmetic of Varieties over Number Fields”. The second author was also partially supported by PRA 2013 “Geometria Algebrica e Teoria dei Numeri”.
- © Copyright 2017 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 369 (2017), 7301-7342
- MSC (2010): Primary 14C25, 11F11
- DOI: https://doi.org/10.1090/tran/6947
- MathSciNet review: 3683110