The two definitions of the index difference
HTML articles powered by AMS MathViewer
- by Johannes Ebert PDF
- Trans. Amer. Math. Soc. 369 (2017), 7469-7507 Request permission
Abstract:
Given two metrics of positive scalar curvature on a closed spin manifold, there is a secondary index invariant in real $K$-theory. There exist two definitions of this invariant: one of a homotopical flavor, the other one defined by an index problem of Atiyah-Patodi-Singer type. We give a complete and detailed proof of the folklore result that both constructions yield the same answer. Moreover, we generalize this result to the case of two families of positive scalar curvature metrics, parametrized by a finite CW complex. In essence, we prove a generalization of the classical “spectral-flow-index theorem” to the case of families of real operators.References
- M. F. Atiyah, $K$-theory, W. A. Benjamin, Inc., New York-Amsterdam, 1967. Lecture notes by D. W. Anderson. MR 0224083
- M. F. Atiyah, Bott periodicity and the index of elliptic operators, Quart. J. Math. Oxford Ser. (2) 19 (1968), 113–140. MR 228000, DOI 10.1093/qmath/19.1.113
- M. F. Atiyah, R. Bott, and A. Shapiro, Clifford modules, Topology 3 (1964), no. suppl, suppl. 1, 3–38. MR 167985, DOI 10.1016/0040-9383(64)90003-5
- M. F. Atiyah, V. K. Patodi, and I. M. Singer, Spectral asymmetry and Riemannian geometry. I, Math. Proc. Cambridge Philos. Soc. 77 (1975), 43–69. MR 397797, DOI 10.1017/S0305004100049410
- M. F. Atiyah, V. K. Patodi, and I. M. Singer, Spectral asymmetry and Riemannian geometry. III, Math. Proc. Cambridge Philos. Soc. 79 (1976), no. 1, 71–99. MR 397799, DOI 10.1017/S0305004100052105
- M. F. Atiyah and I. M. Singer, The index of elliptic operators. I, Ann. of Math. (2) 87 (1968), 484–530. MR 236950, DOI 10.2307/1970715
- M. F. Atiyah and I. M. Singer, Index theory for skew-adjoint Fredholm operators, Inst. Hautes Études Sci. Publ. Math. 37 (1969), 5–26. MR 285033, DOI 10.1007/BF02684885
- M. F. Atiyah and I. M. Singer, The index of elliptic operators. IV, Ann. of Math. (2) 93 (1971), 119–138. MR 279833, DOI 10.2307/1970756
- Michael Atiyah and Graeme Segal, Twisted $K$-theory, Ukr. Mat. Visn. 1 (2004), no. 3, 287–330; English transl., Ukr. Math. Bull. 1 (2004), no. 3, 291–334. MR 2172633
- Robert G. Bartle and Lawrence M. Graves, Mappings between function spaces, Trans. Amer. Math. Soc. 72 (1952), 400–413. MR 47910, DOI 10.1090/S0002-9947-1952-0047910-X
- Bruce Blackadar, $K$-theory for operator algebras, 2nd ed., Mathematical Sciences Research Institute Publications, vol. 5, Cambridge University Press, Cambridge, 1998. MR 1656031
- Bernhelm Booß-Bavnbek and Krzysztof P. Wojciechowski, Elliptic boundary problems for Dirac operators, Mathematics: Theory & Applications, Birkhäuser Boston, Inc., Boston, MA, 1993. MR 1233386, DOI 10.1007/978-1-4612-0337-7
- B. Botvinnik, J. Ebert, and O. Randal-Williams, Infinite loop spaces and positive scalar curvature, Invent. Math. (2017), DOI 10.1007/s00222-017-0719-3.
- Ulrich Bunke, On the spectral flow of families of Dirac operators with constant symbol, Math. Nachr. 165 (1994), 191–203. MR 1261370, DOI 10.1002/mana.19941650113
- Diarmuid Crowley and Thomas Schick, The Gromoll filtration, $KO$-characteristic classes and metrics of positive scalar curvature, Geom. Topol. 17 (2013), no. 3, 1773–1789. MR 3073935, DOI 10.2140/gt.2013.17.1773
- Jacques Dixmier and Adrien Douady, Champs continus d’espaces hilbertiens et de $C^{\ast }$-algèbres, Bull. Soc. Math. France 91 (1963), 227–284 (French). MR 163182, DOI 10.24033/bsmf.1596
- Mikhael Gromov and H. Blaine Lawson Jr., Positive scalar curvature and the Dirac operator on complete Riemannian manifolds, Inst. Hautes Études Sci. Publ. Math. 58 (1983), 83–196 (1984). MR 720933, DOI 10.1007/BF02953774
- Bernhard Hanke, Thomas Schick, and Wolfgang Steimle, The space of metrics of positive scalar curvature, Publ. Math. Inst. Hautes Études Sci. 120 (2014), 335–367. MR 3270591, DOI 10.1007/s10240-014-0062-9
- Nigel Higson and John Roe, Analytic $K$-homology, Oxford Mathematical Monographs, Oxford University Press, Oxford, 2000. Oxford Science Publications. MR 1817560
- Nigel Hitchin, Harmonic spinors, Advances in Math. 14 (1974), 1–55. MR 358873, DOI 10.1016/0001-8708(74)90021-8
- Richard B. Holmes, Geometric functional analysis and its applications, Graduate Texts in Mathematics, No. 24, Springer-Verlag, New York-Heidelberg, 1975. MR 0410335, DOI 10.1007/978-1-4684-9369-6
- Jens Kaad and Matthias Lesch, Spectral flow and the unbounded Kasparov product, Adv. Math. 248 (2013), 495–530. MR 3107519, DOI 10.1016/j.aim.2013.08.015
- Max Karoubi, Espaces classifiants en $K$-théorie, Trans. Amer. Math. Soc. 147 (1970), 75–115 (French). MR 261592, DOI 10.1090/S0002-9947-1970-0261592-4
- G. G. Kasparov, The operator $K$-functor and extensions of $C^{\ast }$-algebras, Izv. Akad. Nauk SSSR Ser. Mat. 44 (1980), no. 3, 571–636, 719 (Russian). MR 582160
- Nicolaas H. Kuiper, The homotopy type of the unitary group of Hilbert space, Topology 3 (1965), 19–30. MR 179792, DOI 10.1016/0040-9383(65)90067-4
- H. Blaine Lawson Jr. and Marie-Louise Michelsohn, Spin geometry, Princeton Mathematical Series, vol. 38, Princeton University Press, Princeton, NJ, 1989. MR 1031992
- Liviu I. Nicolaescu, On the space of Fredholm operators, An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.) 53 (2007), no. 2, 209–227. MR 2386795
- Richard S. Palais, Homotopy theory of infinite dimensional manifolds, Topology 5 (1966), 1–16. MR 189028, DOI 10.1016/0040-9383(66)90002-4
- Joel Robbin and Dietmar Salamon, The spectral flow and the Maslov index, Bull. London Math. Soc. 27 (1995), no. 1, 1–33. MR 1331677, DOI 10.1112/blms/27.1.1
- N. E. Steenrod, A convenient category of topological spaces, Michigan Math. J. 14 (1967), 133–152. MR 210075, DOI 10.1307/mmj/1028999711
- Tammo tom Dieck, Algebraic topology, EMS Textbooks in Mathematics, European Mathematical Society (EMS), Zürich, 2008. MR 2456045, DOI 10.4171/048
- N. E. Wegge-Olsen, $K$-theory and $C^*$-algebras, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1993. A friendly approach. MR 1222415
Additional Information
- Johannes Ebert
- Affiliation: Mathematisches Institut, Universität Münster, Einsteinstraße 62, 48149 Münster, Bundesrepublik Deutschland
- MR Author ID: 811149
- Email: johannes.ebert@uni-muenster.de
- Received by editor(s): August 22, 2013
- Received by editor(s) in revised form: October 7, 2014, August 7, 2015, August 10, 2015, April 12, 2016, and November 17, 2016
- Published electronically: June 13, 2017
- © Copyright 2017 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 369 (2017), 7469-7507
- MSC (2010): Primary 19K56, 53C21, 53C27, 55N15, 58J30, 58J40
- DOI: https://doi.org/10.1090/tran/7133
- MathSciNet review: 3683115