Eigenvalue bounds for Schrödinger operators with complex potentials. III
Author:
Rupert L. Frank
Journal:
Trans. Amer. Math. Soc. 370 (2018), 219-240
MSC (2010):
Primary 35P15, 31Q12
DOI:
https://doi.org/10.1090/tran/6936
Published electronically:
July 13, 2017
MathSciNet review:
3717979
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: We discuss the eigenvalues $E_j$ of Schrödinger operators $-\Delta +V$ in $L^2(\mathbb {R}^d)$ with complex potentials $V\in L^p$, $p<\infty$. We show that (A) $\operatorname {Re} E_j\to \infty$ implies $\operatorname {Im} E_j\to 0$, and (B) $\operatorname {Re} E_j\to E\in [0,\infty )$ implies $(\operatorname {Im} E_j)\in \ell ^q$ for some $q$ depending on $p$. We prove quantitative versions of (A) and (B) in terms of the $L^p$-norm of $V$.
- A. A. Abramov, A. Aslanyan, and E. B. Davies, Bounds on complex eigenvalues and resonances, J. Phys. A 34 (2001), no. 1, 57–72. MR 1819914, DOI https://doi.org/10.1088/0305-4470/34/1/304
- A. Borichev, L. Golinskii, and S. Kupin, A Blaschke-type condition and its application to complex Jacobi matrices, Bull. Lond. Math. Soc. 41 (2009), no. 1, 117–123. MR 2481997, DOI https://doi.org/10.1112/blms/bdn109
- E. B. Davies and Jiban Nath, Schrödinger operators with slowly decaying potentials, J. Comput. Appl. Math. 148 (2002), no. 1, 1–28. On the occasion of the 65th birthday of Professor Michael Eastham. MR 1946184, DOI https://doi.org/10.1016/S0377-0427%2802%2900570-8
- Michael Demuth and Guy Katriel, Eigenvalue inequalities in terms of Schatten norm bounds on differences of semigroups, and application to Schrödinger operators, Ann. Henri Poincaré 9 (2008), no. 4, 817–834. MR 2413204, DOI https://doi.org/10.1007/s00023-008-0373-9
- Michael Demuth, Marcel Hansmann, and Guy Katriel, On the discrete spectrum of non-selfadjoint operators, J. Funct. Anal. 257 (2009), no. 9, 2742–2759. MR 2559715, DOI https://doi.org/10.1016/j.jfa.2009.07.018
- Michael Demuth, Marcel Hansmann, and Guy Katriel, Eigenvalues of non-selfadjoint operators: a comparison of two approaches, Mathematical physics, spectral theory and stochastic analysis, Oper. Theory Adv. Appl., vol. 232, Birkhäuser/Springer Basel AG, Basel, 2013, pp. 107–163. MR 3077277, DOI https://doi.org/10.1007/978-3-0348-0591-9_2
- D. E. Edmunds and W. D. Evans, Spectral theory and differential operators, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1987. Oxford Science Publications. MR 929030
- Alexandra Enblom, Estimates for eigenvalues of Schrödinger operators with complex-valued potentials, Lett. Math. Phys. 106 (2016), no. 2, 197–220. MR 3451537, DOI https://doi.org/10.1007/s11005-015-0810-x
- Rupert L. Frank, Eigenvalue bounds for Schrödinger operators with complex potentials, Bull. Lond. Math. Soc. 43 (2011), no. 4, 745–750. MR 2820160, DOI https://doi.org/10.1112/blms/bdr008
- R. L. Frank, Eigenvalues of Schrödinger operators with complex surface potentials, in Functional Analysis and Operator Theory for Quantum Physics, J. Dittrich, et al. (eds.), EMS, 2017, pp. 245–260.
- Rupert L. Frank, Ari Laptev, Elliott H. Lieb, and Robert Seiringer, Lieb-Thirring inequalities for Schrödinger operators with complex-valued potentials, Lett. Math. Phys. 77 (2006), no. 3, 309–316. MR 2260376, DOI https://doi.org/10.1007/s11005-006-0095-1
- Rupert L. Frank and Alexander Pushnitski, Trace class conditions for functions of Schrödinger operators, Comm. Math. Phys. 335 (2015), no. 1, 477–496. MR 3314510, DOI https://doi.org/10.1007/s00220-014-2205-8
- R. L. Frank and J. Sabin, Restriction theorems for orthonormal functions, Strichartz inequalities and uniform Sobolev estimates. Amer. J. Math., to appear, http://arxiv.org/pdf/ 1404.2817.pdf
- R. L. Frank and B. Simon, Eigenvalue bounds for Schrödinger operators with complex potentials. II, J. Spectr. Theory, to appear.
- Fritz Gesztesy, Helge Holden, and Roger Nichols, On factorizations of analytic operator-valued functions and eigenvalue multiplicity questions, Integral Equations Operator Theory 82 (2015), no. 1, 61–94. MR 3335509, DOI https://doi.org/10.1007/s00020-014-2200-7
- F. Gesztesy, Y. Latushkin, M. Mitrea, and M. Zinchenko, Nonselfadjoint operators, infinite determinants, and some applications, Russ. J. Math. Phys. 12 (2005), no. 4, 443–471. MR 2201310
- I. C. Gohberg, S. Goldberg, and M. A. Kaashoek, Classes of linear operators. Vol. 1, Birkhäuser Verlag, Basel, 2000.
- Franz Hanauska, On the closure of the discrete spectrum of nuclearly perturbed operators, Oper. Matrices 9 (2015), no. 2, 359–364. MR 3338569, DOI https://doi.org/10.7153/oam-09-21
- M. Hansmann, On the discrete spectrum of linear operators in Hilbert spaces, PhD thesis, TU Clausthal, 2010, http://d-nb.info/1001898664/34/
- Marcel Hansmann, An eigenvalue estimate and its application to non-selfadjoint Jacobi and Schrödinger operators, Lett. Math. Phys. 98 (2011), no. 1, 79–95. MR 2836430, DOI https://doi.org/10.1007/s11005-011-0494-9
- Tosio Kato, Perturbation theory for linear operators, Classics in Mathematics, Springer-Verlag, Berlin, 1995. Reprint of the 1980 edition. MR 1335452
- C. E. Kenig, A. Ruiz, and C. D. Sogge, Uniform Sobolev inequalities and unique continuation for second order constant coefficient differential operators, Duke Math. J. 55 (1987), no. 2, 329–347. MR 894584, DOI https://doi.org/10.1215/S0012-7094-87-05518-9
- Ari Laptev and Oleg Safronov, Eigenvalue estimates for Schrödinger operators with complex potentials, Comm. Math. Phys. 292 (2009), no. 1, 29–54. MR 2540070, DOI https://doi.org/10.1007/s00220-009-0883-4
- Y. Latushkin and A. Sukhtayev, The algebraic multiplicity of eigenvalues and the Evans function revisited, Math. Model. Nat. Phenom. 5 (2010), no. 4, 269–292. MR 2662459, DOI https://doi.org/10.1051/mmnp/20105412
- Elliott H. Lieb and Michael Loss, Analysis, 2nd ed., Graduate Studies in Mathematics, vol. 14, American Mathematical Society, Providence, RI, 2001. MR 1817225
- E. H. Lieb aaand W. Thirring, Inequalities for the moments of the eigenvalues of the Schrödinger Hamiltonian and their relation to Sobolev inequalities, Studies in Mathematical Physics. Princeton University Press, Princeton (1976), pp. 269–303.
- R. M. Martirosjan, On the spectrum of the non-selfadjoint operator $-\Delta u+cu$ in three dimensional space, Izv. Akad. Nauk Armyan. SSR. Ser. Fiz.-Mat. Nauk 10 (1957), no. 1, 85–111 (Russian, with Armenian summary). MR 0103332
- R. M. Martirosjan, On the spectrum of various perturbations of the Laplace operator in spaces of three or more dimensions, Izv. Akad. Nauk SSSR Ser. Mat. 24 (1960), 897–920 (Russian). MR 0133592
- M. A. Naĭmark, Investigation of the spectrum and the expansion in eigenfunctions of a nonselfadjoint operator of the second order on a semi-axis, Trudy Moskov. Mat. Obšč. 3 (1954), 181–270 (Russian). MR 0062311
- B. S. Pavlov, On a non-selfadjoint Schrödinger operator, Probl. Math. Phys., No. I, Spectral Theory and Wave Processes (Russian), Izdat. Leningrad. Univ., Leningrad, 1966, pp. 102–132 (Russian). MR 0203530
- B. S. Pavlov, On a non-selfadjoint Schrödinger operator. II, Problems of Mathematical Physics, No. 2, Spectral Theory, Diffraction Problems (Russian), Izdat. Leningrad. Univ., Leningrad, 1967, pp. 133–157 (Russian). MR 0234319
- B. S. Pavlov, On a nonselfadjoint Schrödinger operator. III, Problems of mathematical physics, No. 3: Spectral theory (Russian), Izdat. Leningrad. Univ., Leningrad, 1968, pp. 59–80 (Russian). MR 0348554
- Ch. Pommerenke, Boundary behaviour of conformal maps, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 299, Springer-Verlag, Berlin, 1992. MR 1217706
- Oleg Safronov, Estimates for eigenvalues of the Schrödinger operator with a complex potential, Bull. Lond. Math. Soc. 42 (2010), no. 3, 452–456. MR 2651940, DOI https://doi.org/10.1112/blms/bdq007
- Barry Simon, Notes on infinite determinants of Hilbert space operators, Advances in Math. 24 (1977), no. 3, 244–273. MR 482328, DOI https://doi.org/10.1016/0001-8708%2877%2990057-3
- Barry Simon, Trace ideals and their applications, 2nd ed., Mathematical Surveys and Monographs, vol. 120, American Mathematical Society, Providence, RI, 2005. MR 2154153
- D. R. Yafaev, Mathematical scattering theory, Mathematical Surveys and Monographs, vol. 158, American Mathematical Society, Providence, RI, 2010. Analytic theory. MR 2598115
Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 35P15, 31Q12
Retrieve articles in all journals with MSC (2010): 35P15, 31Q12
Additional Information
Rupert L. Frank
Affiliation:
Deparment of Mathematics 253-37, Caltech, Pasadena, California 91125
MR Author ID:
728268
ORCID:
0000-0001-7973-4688
Email:
rlfrank@caltech.edu
Received by editor(s):
October 12, 2015
Received by editor(s) in revised form:
March 14, 2016
Published electronically:
July 13, 2017
Additional Notes:
The author was supported by NSF grant DMS–1363432.
Article copyright:
© Copyright 2017
by the author