Trajectories in interlaced integral pencils of 3-dimensional analytic vector fields are o-minimal
Authors:
Olivier Le Gal, Fernando Sanz and Patrick Speissegger
Journal:
Trans. Amer. Math. Soc. 370 (2018), 2211-2229
MSC (2010):
Primary 34C08, 03C64, 34M30
DOI:
https://doi.org/10.1090/tran/7205
Published electronically:
November 1, 2017
MathSciNet review:
3739207
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: Let be an analytic vector field at
and
be an analytically non-oscillatory integral pencil of
; i.e.,
is a maximal family of analytically non-oscillatory trajectories of
at 0 all sharing the same iterated tangents. We prove that if
is interlaced, then for any trajectory
, the expansion
of the structure
by
is model-complete, o-minimal and polynomially bounded.
- [1] Edward Bierstone and Pierre D. Milman, Semianalytic and subanalytic sets, Inst. Hautes Études Sci. Publ. Math. 67 (1988), 5–42. MR 972342
- [2] Patrick Bonckaert and Freddy Dumortier, Smooth invariant curves for germs of vector fields in 𝑅³ whose linear part generates a rotation, J. Differential Equations 62 (1986), no. 1, 95–116. MR 830049, https://doi.org/10.1016/0022-0396(86)90107-5
- [3] Felipe Cano, Robert Moussu, and Fernando Sanz, Pinceaux de courbes intégrales d’un champ de vecteurs analytique, Astérisque 297 (2004), 1–34 (French, with English and French summaries). Analyse complexe, systèmes dynamiques, sommabilité des séries divergentes et théories galoisiennes. II. MR 2135673
- [4] F. Cano, R. Moussu, and F. Sanz, Oscillation, spiralement, tourbillonnement, Comment. Math. Helv. 75 (2000), no. 2, 284–318 (French, with English and French summaries). MR 1774707, https://doi.org/10.1007/s000140050127
- [5] Shui Nee Chow and Jack K. Hale, Methods of bifurcation theory, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Science], vol. 251, Springer-Verlag, New York-Berlin, 1982. MR 660633
- [6] M. Coste, An introduction to o-minimal structures, Dipartimento di Matematica, Università di Pisa, Int. Ed. e Poligr. Int. (2000).
- [7] Lou van den Dries and Chris Miller, Geometric categories and o-minimal structures, Duke Math. J. 84 (1996), no. 2, 497–540. MR 1404337, https://doi.org/10.1215/S0012-7094-96-08416-1
- [8] Robin Hartshorne, Algebraic geometry, Springer-Verlag, New York-Heidelberg, 1977. Graduate Texts in Mathematics, No. 52. MR 0463157
- [9] Jean-Marie Lion and Jean-Philippe Rolin, Volumes, feuilles de Rolle de feuilletages analytiques et théorème de Wilkie, Ann. Fac. Sci. Toulouse Math. (6) 7 (1998), no. 1, 93–112 (French, with English and French summaries). MR 1658452
- [10] O. Le Gal, F. Sanz, and P. Speissegger, Non-interlaced solutions of 2-dimensional systems of linear ordinary differential equations, Proc. Amer. Math. Soc. 141 (2013), no. 7, 2429–2438. MR 3043024, https://doi.org/10.1090/S0002-9939-2013-11614-X
- [11] B. Malgrange and J.-P. Ramis, Fonctions multisommables, Ann. Inst. Fourier (Grenoble) 42 (1992), no. 1-2, 353–368 (French, with English summary). MR 1162566
- [12] J.-P. Ramis and Y. Sibuya, A new proof of multisummability of formal solutions of nonlinear meromorphic differential equations, Ann. Inst. Fourier (Grenoble) 44 (1994), no. 3, 811–848 (English, with English and French summaries). MR 1303885
- [13] J.-P. Rolin, F. Sanz, and R. Schäfke, Quasi-analytic solutions of analytic ordinary differential equations and o-minimal structures, Proc. Lond. Math. Soc. (3) 95 (2007), no. 2, 413–442. MR 2352566, https://doi.org/10.1112/plms/pdm016
- [14] F. Sanz, Course on non-oscillatory trajectories, Fields Institute Communications, vol. 62, Amer. Math. Soc., Providence, RI, 2012, pp. 111-177.
- [15] Patrick Speissegger, The Pfaffian closure of an o-minimal structure, J. Reine Angew. Math. 508 (1999), 189–211. MR 1676876, https://doi.org/10.1515/crll.1999.026
- [16] Floris Takens, Singularities of vector fields, Inst. Hautes Études Sci. Publ. Math. 43 (1974), 47–100. MR 339292
- [17] Lou van den Dries, Tame topology and o-minimal structures, London Mathematical Society Lecture Note Series, vol. 248, Cambridge University Press, Cambridge, 1998. MR 1633348
- [18] Wolfgang Wasow, Asymptotic expansions for ordinary differential equations, Pure and Applied Mathematics, Vol. XIV, Interscience Publishers John Wiley & Sons, Inc., New York-London-Sydney, 1965. MR 0203188
Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 34C08, 03C64, 34M30
Retrieve articles in all journals with MSC (2010): 34C08, 03C64, 34M30
Additional Information
Olivier Le Gal
Affiliation:
Université de Savoie, Laboratoire de Mathématiques, Bâtiment Chablais, Campus Scientifique, 73376 Le Bourget-du-Lac Cedex, France
MR Author ID:
831839
Email:
Olivier.Le-Gal@univ-savoie.fr
Fernando Sanz
Affiliation:
Universidad de Valladolid, Departamento de Álgebra, Análisis Matemático, Geometría y Topología, Facultad de Ciencias, Campus Miguel Delibes, Paseo de Belén, 7, E-47011 Valladolid, Spain
MR Author ID:
623470
Email:
fsanz@agt.uva.es
Patrick Speissegger
Affiliation:
Department of Mathematics and Statistics, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
MR Author ID:
361060
Email:
speisseg@math.mcmaster.ca
DOI:
https://doi.org/10.1090/tran/7205
Keywords:
Ordinary differential equations,
o-minimal structures,
multisummable series,
Stokes phenomena
Received by editor(s):
October 9, 2013
Received by editor(s) in revised form:
January 16, 2017
Published electronically:
November 1, 2017
Article copyright:
© Copyright 2017
American Mathematical Society