Hardy-type results on the average of the lattice point error term over long intervals
HTML articles powered by AMS MathViewer
- by Burton Randol PDF
- Trans. Amer. Math. Soc. 370 (2018), 3113-3127 Request permission
Abstract:
Suppose $D$ is a suitably admissible compact subset of $\mathbb {R}^k$ having a smooth boundary with possible zones of zero curvature. Let $R(T,\theta ,x)= N(T,\theta ,x) - T^{k}\mathrm {vol}(D)$, where $N(T,\theta ,x)$ is the number of integral lattice points contained in an $x$-translation of $T\theta (D)$, with $T >0$ a dilation parameter and $\theta \in SO(k)$. Then $R(T,\theta ,x)$ can be regarded as a function with parameter $T$ on the space $E_{*}^{+}(k)$, where $E_{*}^{+}(k)$ is the quotient of the direct Euclidean group by the subgroup of integral translations and $E_{*}^{+}(k)$ has a normalized invariant measure which is the product of normalized measures on $SO(k)$ and the $k$-torus. We derive an integral estimate, valid for almost all $(\theta ,x) \in E_{*}^{+}(k)$, one consequence of which in two dimensions is that for almost all $(\theta ,x) \in E_{*}^{+}(2)$, a counterpart of the Hardy circle estimate $(1/T)\int _{1}^{T} |R(t,\theta ,x) dt| \ll T^{\frac {1}{4} +\epsilon }$ is valid with an improved estimate. We conclude with an account of hyperbolic versions for which, drawing on previous work of Hill and Parnovski, we give counterparts in all dimensions for both the compact and non-compact finite volume cases.References
- P. Bleher and J. Bourgain, Distribution of the error term for the number of lattice points inside a shifted ball, Analytic number theory, Vol. 1 (Allerton Park, IL, 1995) Progr. Math., vol. 138, Birkhäuser Boston, Boston, MA, 1996, pp. 141–153. MR 1399335, DOI 10.1007/s10107-012-0541-z
- Pavel M. Bleher, Zheming Cheng, Freeman J. Dyson, and Joel L. Lebowitz, Distribution of the error term for the number of lattice points inside a shifted circle, Comm. Math. Phys. 154 (1993), no. 3, 433–469. MR 1224087, DOI 10.1007/BF02102104
- L. Brandolini, S. Hofmann, and A. Iosevich, Sharp rate of average decay of the Fourier transform of a bounded set, Geom. Funct. Anal. 13 (2003), no. 4, 671–680. MR 2006553, DOI 10.1007/s00039-003-0426-7
- Peter Buser, Riemannsche Flächen mit Eigenwerten in $(0,$ $1/4)$, Comment. Math. Helv. 52 (1977), no. 1, 25–34. MR 434961, DOI 10.1007/BF02567355
- K. Chandrasekharan and Raghavan Narasimhan, On lattice-points in a random sphere, Bull. Amer. Math. Soc. 73 (1967), 68–71. MR 211967, DOI 10.1090/S0002-9904-1967-11644-6
- Harald Cramér, Über zwei Sätze des Herrn G. H. Hardy, Math. Z. 15 (1922), no. 1, 201–210 (German). MR 1544568, DOI 10.1007/BF01494394
- Y. Colin de Verdière, Nombre de points entiers dans une famille homothétique de domains de $\textbf {R}$, Ann. Sci. École Norm. Sup. (4) 10 (1977), no. 4, 559–575 (French). MR 480399, DOI 10.24033/asens.1337
- Jean Delsarte, Sur le gitter fuchsien, C. R. Acad. Sci. Paris 214 (1942), 147–179 (French). MR 7769
- Jean Delsarte, Le gitter fuchsien, Oeuvres de Jean Delsarte, t. II, Éditions du CNRS, Paris, 1971, pp. 829–845.
- G. H. Hardy, The Average Order of the Arithmetical Functions P(x) and delta(x), Proc. London Math. Soc. (2) 15 (1916), 192–213. MR 1576556, DOI 10.1112/plms/s2-15.1.192
- Dennis A. Hejhal, The Selberg trace formula for $\textrm {PSL}(2,R)$. Vol. I, Lecture Notes in Mathematics, Vol. 548, Springer-Verlag, Berlin-New York, 1976. MR 0439755, DOI 10.1007/BFb0079608
- R. Hill and L. Parnovski, The variance of the hyperbolic lattice point counting function, Russ. J. Math. Phys. 12 (2005), no. 4, 472–482. MR 2201311
- Heinz Huber, Über eine neue Klasse automorpher Funktionen und ein Gitterpunktproblem in der hyperbolischen Ebene. I, Comment. Math. Helv. 30 (1956), 20–62 (1955) (German). MR 74536, DOI 10.1007/BF02564331
- Alex Iosevich and Elijah Liflyand, Decay of the Fourier transform, Birkhäuser/Springer, Basel, 2014. Analytic and geometric aspects. MR 3308120, DOI 10.1007/978-3-0348-0625-1
- Henryk Iwaniec, Spectral methods of automorphic forms, 2nd ed., Graduate Studies in Mathematics, vol. 53, American Mathematical Society, Providence, RI; Revista Matemática Iberoamericana, Madrid, 2002. MR 1942691, DOI 10.1090/gsm/053
- David G. Kendall, On the number of lattice points inside a random oval, Quart. J. Math. Oxford Ser. 19 (1948), 1–26. MR 24929, DOI 10.1093/qmath/os-19.1.1
- Hugues Lapointe, Iosif Polterovich, and Yuri Safarov, Average growth of the spectral function on a Riemannian manifold, Comm. Partial Differential Equations 34 (2009), no. 4-6, 581–615. MR 2530710, DOI 10.1080/03605300802537453
- Peter D. Lax and Ralph S. Phillips, The asymptotic distribution of lattice points in Euclidean and non-Euclidean spaces, J. Functional Analysis 46 (1982), no. 3, 280–350. MR 661875, DOI 10.1016/0022-1236(82)90050-7
- B. M. Levitan, Asymptotic formulas for the number of lattice points in Euclidean and Lobachevskiĭ spaces, Uspekhi Mat. Nauk 42 (1987), no. 3(255), 13–38, 255 (Russian). MR 896876
- W. Luo, Z. Rudnick, and P. Sarnak, On Selberg’s eigenvalue conjecture, Geom. Funct. Anal. 5 (1995), no. 2, 387–401. MR 1334872, DOI 10.1007/BF01895672
- John J. Millson, On the first Betti number of a constant negatively curved manifold, Ann. of Math. (2) 104 (1976), no. 2, 235–247. MR 422501, DOI 10.2307/1971046
- Werner Müller, Spectral theory of automorphic forms, http://www.math.uni-bonn.de/people/mueller/skripte/specauto.pdf (2010), 1–61.
- Jean-Pierre Otal and Eulalio Rosas, Pour toute surface hyperbolique de genre $g,\ \lambda _{2g-2}>1/4$, Duke Math. J. 150 (2009), no. 1, 101–115 (French, with English and French summaries). MR 2560109, DOI 10.1215/00127094-2009-048
- S. J. Patterson, A lattice-point problem in hyperbolic space, Mathematika 22 (1975), no. 1, 81–88. MR 422160, DOI 10.1112/S0025579300004526
- Ralph Phillips and Zeév Rudnick, The circle problem in the hyperbolic plane, J. Funct. Anal. 121 (1994), no. 1, 78–116. MR 1270589, DOI 10.1006/jfan.1994.1045
- Burton Randol, A lattice-point problem, Trans. Amer. Math. Soc. 121 (1966), 257–268. MR 201407, DOI 10.1090/S0002-9947-1966-0201407-2
- Burton Randol, A lattice-point problem. II, Trans. Amer. Math. Soc. 125 (1966), 101–113. MR 201408, DOI 10.1090/S0002-9947-1966-0201408-4
- Burton Randol, On the Fourier transform of the indicator function of a planar set, Trans. Amer. Math. Soc. 139 (1969), 271–278. MR 251449, DOI 10.1090/S0002-9947-1969-0251449-9
- Burton Randol, On the asymptotic behavior of the Fourier transform of the indicator function of a convex set, Trans. Amer. Math. Soc. 139 (1969), 279–285. MR 251450, DOI 10.1090/S0002-9947-1969-0251450-5
- Burton Randol, Small eigenvalues of the Laplace operator on compact Riemann surfaces, Bull. Amer. Math. Soc. 80 (1974), 996–1000. MR 400316, DOI 10.1090/S0002-9904-1974-13609-8
- Burton Randol, The Riemann hypothesis for Selberg’s zeta-function and the asymptotic behavior of eigenvalues of the Laplace operator, Trans. Amer. Math. Soc. 236 (1978), 209–223. MR 472728, DOI 10.1090/S0002-9947-1978-0472728-1
- Burton Randol, A Dirichlet series of eigenvalue type with applications to asymptotic estimates, Bull. London Math. Soc. 13 (1981), no. 4, 309–315. MR 620043, DOI 10.1112/blms/13.4.309
- Isaac Chavel, Eigenvalues in Riemannian geometry, Pure and Applied Mathematics, vol. 115, Academic Press, Inc., Orlando, FL, 1984. Including a chapter by Burton Randol; With an appendix by Jozef Dodziuk. MR 768584
- Ingvar Svensson, Estimates for the Fourier transform of the characteristic function of a convex set, Ark. Mat. 9 (1971), 11–22. MR 328471, DOI 10.1007/BF02383634
- A. N. Varchenko, On the number of lattice points in a domain, Uspekhi Mat. Nauk 37 (1982), no. 3(225), 177–178 (Russian). MR 659434
- A. N. Varchenko, The number of lattice points in families of homothetic domains in $\textbf {R}^{n}$, Funktsional. Anal. i Prilozhen. 17 (1983), no. 2, 1–6 (Russian). MR 705041
- William Wolfe, The asymptotic distribution of lattice points in hyperbolic space, J. Functional Analysis 31 (1979), no. 3, 333–340. MR 531135, DOI 10.1016/0022-1236(79)90007-7
- A. A. Yudin, On the number of integer points in the displaced circles, Acta Arith. 14 (1967/68), 141–152. MR 229601, DOI 10.4064/aa-14-2-141-152
Additional Information
- Burton Randol
- Affiliation: Ph.D. Program in Mathematics, Graduate Center of CUNY, 365 Fifth Avenue, New York, New York 10016
- MR Author ID: 211692
- Received by editor(s): March 22, 2016
- Received by editor(s) in revised form: July 20, 2016
- Published electronically: October 31, 2017
- © Copyright 2017 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 370 (2018), 3113-3127
- MSC (2010): Primary 11F72, 20F69, 11P21, 35P20
- DOI: https://doi.org/10.1090/tran/7043
- MathSciNet review: 3766843