Heegner points on modular curves
HTML articles powered by AMS MathViewer
- by Li Cai, Yihua Chen and Yu Liu PDF
- Trans. Amer. Math. Soc. 370 (2018), 3721-3743 Request permission
Abstract:
In this paper, we study the Heegner points on more general modular curves other than $X_0(N)$, which generalizes Gross’ work “Heegner points on $X_0(N)$”. The explicit Gross-Zagier formula and the Euler system property are stated in this case. Using such a kind of Heegner points, we construct certain families of quadratic twists of $X_0(36)$, with the ranks of Mordell-Weil groups being zero and one respectively, and show that the $2$-part of their BSD conjectures hold.References
- Massimo Bertolini and Henri Darmon, Heegner points, $p$-adic $L$-functions, and the Cerednik-Drinfeld uniformization, Invent. Math. 131 (1998), no. 3, 453–491. MR 1614543, DOI 10.1007/s002220050211
- Daniel Bump, Solomon Friedberg, and Jeffrey Hoffstein, Nonvanishing theorems for $L$-functions of modular forms and their derivatives, Invent. Math. 102 (1990), no. 3, 543–618. MR 1074487, DOI 10.1007/BF01233440
- Li Cai, Jie Shu, and Ye Tian, Explicit Gross-Zagier and Waldspurger formulae, Algebra Number Theory 8 (2014), no. 10, 2523–2572. MR 3298547, DOI 10.2140/ant.2014.8.2523
- John Coates, Yongxiong Li, Ye Tian, and Shuai Zhai, Quadratic twists of elliptic curves, Proc. Lond. Math. Soc. (3) 110 (2015), no. 2, 357–394. MR 3335282, DOI 10.1112/plms/pdu059
- Solomon Friedberg and Jeffrey Hoffstein, Nonvanishing theorems for automorphic $L$-functions on $\textrm {GL}(2)$, Ann. of Math. (2) 142 (1995), no. 2, 385–423. MR 1343325, DOI 10.2307/2118638
- Benedict H. Gross, Local orders, root numbers, and modular curves, Amer. J. Math. 110 (1988), no. 6, 1153–1182. MR 970123, DOI 10.2307/2374689
- Benedict H. Gross, Heegner points on $X_0(N)$, Modular forms (Durham, 1983) Ellis Horwood Ser. Math. Appl.: Statist. Oper. Res., Horwood, Chichester, 1984, pp. 87–105. MR 803364
- Benedict H. Gross and Don B. Zagier, Heegner points and derivatives of $L$-series, Invent. Math. 84 (1986), no. 2, 225–320. MR 833192, DOI 10.1007/BF01388809
- Nicholas M. Katz and Barry Mazur, Arithmetic moduli of elliptic curves, Annals of Mathematics Studies, vol. 108, Princeton University Press, Princeton, NJ, 1985. MR 772569, DOI 10.1515/9781400881710
- Jan Nekovář, The Euler system method for CM points on Shimura curves, $L$-functions and Galois representations, London Math. Soc. Lecture Note Ser., vol. 320, Cambridge Univ. Press, Cambridge, 2007, pp. 471–547. MR 2392363, DOI 10.1017/CBO9780511721267.014
- Dipendra Prasad, Some applications of seesaw duality to branching laws, Math. Ann. 304 (1996), no. 1, 1–20. MR 1367880, DOI 10.1007/BF01446282
- Bernadette Perrin-Riou, Points de Heegner et dérivées de fonctions $L$ $p$-adiques, Invent. Math. 89 (1987), no. 3, 455–510 (French). MR 903381, DOI 10.1007/BF01388982
- H. Qin, Representation of integers by positive ternary quadratic forms, preprint, 2015.
- M. Ram Murty and V. Kumar Murty, Mean values of derivatives of modular $L$-series, Ann. of Math. (2) 133 (1991), no. 3, 447–475. MR 1109350, DOI 10.2307/2944316
- Karl Rubin, The “main conjectures” of Iwasawa theory for imaginary quadratic fields, Invent. Math. 103 (1991), no. 1, 25–68. MR 1079839, DOI 10.1007/BF01239508
- A. J. Scholl, On modular units, Math. Ann. 285 (1989), no. 3, 503–510. MR 1019715, DOI 10.1007/BF01455070
- Jean-Pierre Serre, Lectures on the Mordell-Weil theorem, 3rd ed., Aspects of Mathematics, Friedr. Vieweg & Sohn, Braunschweig, 1997. Translated from the French and edited by Martin Brown from notes by Michel Waldschmidt; With a foreword by Brown and Serre. MR 1757192, DOI 10.1007/978-3-663-10632-6
- Goro Shimura, Introduction to the arithmetic theory of automorphic functions, Publications of the Mathematical Society of Japan, vol. 11, Princeton University Press, Princeton, NJ, 1994. Reprint of the 1971 original; Kanô Memorial Lectures, 1. MR 1291394
- Jerrold B. Tunnell, Local $\epsilon$-factors and characters of $\textrm {GL}(2)$, Amer. J. Math. 105 (1983), no. 6, 1277–1307. MR 721997, DOI 10.2307/2374441
- Ye Tian, Euler systems of CM points on Shimura curves, ProQuest LLC, Ann Arbor, MI, 2003. Thesis (Ph.D.)–Columbia University. MR 2704579
- Ye Tian, Congruent numbers and Heegner points, Camb. J. Math. 2 (2014), no. 1, 117–161. MR 3272014, DOI 10.4310/CJM.2014.v2.n1.a4
- Ye Tian, Congruent numbers with many prime factors, Proc. Natl. Acad. Sci. USA 109 (2012), no. 52, 21256–21258. MR 3023667, DOI 10.1073/pnas.1216991109
- Y. Tian, X. Yuan, and S. Zhang, Genus Periods, Genus Points and Congruent Number Problem, preprint, 2015.
- Marie-France Vignéras, Arithmétique des algèbres de quaternions, Lecture Notes in Mathematics, vol. 800, Springer, Berlin, 1980 (French). MR 580949, DOI 10.1007/BFb0091027
- Vivek Pal, Periods of quadratic twists of elliptic curves, Proc. Amer. Math. Soc. 140 (2012), no. 5, 1513–1525. With an appendix by Amod Agashe. MR 2869136, DOI 10.1090/S0002-9939-2011-11014-1
- J.-L. Waldspurger, Sur les coefficients de Fourier des formes modulaires de poids demi-entier, J. Math. Pures Appl. (9) 60 (1981), no. 4, 375–484 (French). MR 646366
- Xinyi Yuan, Shou-Wu Zhang, and Wei Zhang, The Gross-Zagier formula on Shimura curves, Annals of Mathematics Studies, vol. 184, Princeton University Press, Princeton, NJ, 2013. MR 3237437
Additional Information
- Li Cai
- Affiliation: Yau Mathematical Sciences Center, Tsinghua University, Beijing 100084, People’s Republic of China
- MR Author ID: 1093027
- Email: lcai@math.tsinghua.edu.cn
- Yihua Chen
- Affiliation: Academy of Mathematics and Systems Science, Morningside center of Mathematics, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
- Email: yihuachenamss@163.com
- Yu Liu
- Affiliation: Yau Mathematical Sciences Center, Tsinghua University, Beijing 100084, People’s Republic of China
- Email: yliu@math.tsinghua.edu.cn
- Received by editor(s): May 31, 2016
- Received by editor(s) in revised form: August 18, 2016, and August 21, 2016
- Published electronically: December 14, 2017
- Additional Notes: The first author was supported by the Special Financial Grant from the China Postdoctoral Science Foundation 2014T70067.
- © Copyright 2017 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 370 (2018), 3721-3743
- MSC (2010): Primary 11G05, 11G07
- DOI: https://doi.org/10.1090/tran/7053
- MathSciNet review: 3766864