The crystalline period of a height one $p$-adic dynamical system
HTML articles powered by AMS MathViewer
- by Joel Specter PDF
- Trans. Amer. Math. Soc. 370 (2018), 3591-3608 Request permission
Abstract:
Let $f$ be a continuous ring endomorphism of $\mathbf {Z}_p\lBrack x\rBrack /\mathbf {Z}_p$ of degree $p.$ We prove that if $f$ acts on the tangent space at $0$ by a uniformizer and commutes with an automorphism of infinite order, then it is necessarily an endomorphism of a formal group over $\mathbf {Z}_p.$ The proof relies on finding a stable embedding of $\mathbf {Z}_p\lBrack x\rBrack$ in Fontaine’s crystalline period ring with the property that $f$ appears in the monoid of endomorphisms generated by the Galois group of $\mathbf {Q}_p$ and crystalline Frobenius. Our result verifies, over $\mathbf {Z}_p,$ the height one case of a conjecture by Lubin.References
- Laurent Berger, An introduction to the theory of $p$-adic representations, Geometric aspects of Dwork theory. Vol. I, II, Walter de Gruyter, Berlin, 2004, pp. 255–292 (English, with English and French summaries). MR 2023292
- Laurent Berger, Iterated extensions and relative Lubin-Tate groups, Ann. Math. Qué. 40 (2016), no. 1, 17–28 (English, with English and French summaries). MR 3512521, DOI 10.1007/s40316-015-0052-4
- Laurent Berger, Lifting the field of norms, J. Éc. polytech. Math. 1 (2014), 29–38 (English, with English and French summaries). MR 3322781, DOI 10.5802/jep.2
- Jean-Marc Fontaine, Le corps des périodes $p$-adiques, Astérisque 223 (1994), 59–111 (French). With an appendix by Pierre Colmez; Périodes $p$-adiques (Bures-sur-Yvette, 1988). MR 1293971
- Michiel Hazewinkel, Witt vectors. I, Handbook of algebra. Vol. 6, Handb. Algebr., vol. 6, Elsevier/North-Holland, Amsterdam, 2009, pp. 319–472. MR 2553661, DOI 10.1016/S1570-7954(08)00207-6
- Mark Kisin and Wei Ren, Galois representations and Lubin-Tate groups, Doc. Math. 14 (2009), 441–461. MR 2565906
- Neal Koblitz, $p$-adic numbers, $p$-adic analysis, and zeta-functions, Graduate Texts in Mathematics, Vol. 58, Springer-Verlag, New York-Heidelberg, 1977. MR 0466081, DOI 10.1007/978-1-4684-0047-2
- François Laubie, Abbas Movahhedi, and Alain Salinier, Systèmes dynamiques non archimédiens et corps des normes, Compositio Math. 132 (2002), no. 1, 57–98 (French, with English summary). MR 1914256, DOI 10.1023/A:1016009331800
- Hua-Chieh Li, On heights of $p$-adic dynamical systems, Proc. Amer. Math. Soc. 130 (2002), no. 2, 379–386. MR 1862116, DOI 10.1090/S0002-9939-01-06166-4
- Hua-Chieh Li, $p$-typical dynamical systems and formal groups, Compositio Math. 130 (2002), no. 1, 75–88. MR 1883692, DOI 10.1023/A:1013792029235
- Jonathan Lubin, Non-Archimedean dynamical systems, Compositio Math. 94 (1994), no. 3, 321–346. MR 1310863
- Jonathan Lubin and John Tate, Formal complex multiplication in local fields, Ann. of Math. (2) 81 (1965), 380–387. MR 172878, DOI 10.2307/1970622
- Ghassan Sarkis, Height-one commuting power series over $\Bbb Z_p$, Bull. Lond. Math. Soc. 42 (2010), no. 3, 381–387. MR 2651931, DOI 10.1112/blms/bdp130
- Ghassan Sarkis, On lifting commutative dynamical systems, J. Algebra 293 (2005), no. 1, 130–154. MR 2173969, DOI 10.1016/j.jalgebra.2005.08.007
- Ghassan Sarkis and Joel Specter, Galois extensions of height-one commuting dynamical systems, J. Théor. Nombres Bordeaux 25 (2013), no. 1, 163–178 (English, with English and French summaries). MR 3063836, DOI 10.5802/jtnb.831
- Peter Scholze and Jared Weinstein, Moduli of $p$-divisible groups, Camb. J. Math. 1 (2013), no. 2, 145–237. MR 3272049, DOI 10.4310/CJM.2013.v1.n2.a1
- Jean-Pierre Wintenberger, Automorphismes des corps locaux de caractéristique $p$, J. Théor. Nombres Bordeaux 16 (2004), no. 2, 429–456 (French, with English and French summaries). MR 2143563, DOI 10.5802/jtnb.455
Additional Information
- Joel Specter
- Affiliation: Department of Mathematics, Northwestern University, 2033 Sheridan Road, Evans- ton, Illinois 60208
- Address at time of publication: Department of Mathematics, Johns Hopkins University, 419 Krieger Hall, 3400 N. Charles Street, Baltimore, Maryland 21218
- MR Author ID: 1022895
- Email: jspecter@jhu.edu
- Received by editor(s): April 11, 2016
- Received by editor(s) in revised form: August 16, 2016
- Published electronically: December 29, 2017
- Additional Notes: The author was supported in part by National Science Foundation Grant DMS-1404620 and by a National Science Foundation Graduate Research Fellowship under Grant No. DGE-1324585.
- © Copyright 2017 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 370 (2018), 3591-3608
- MSC (2010): Primary 11S20, 11S31, 11S82; Secondary 14L05, 13F25, 14F30
- DOI: https://doi.org/10.1090/tran/7057
- MathSciNet review: 3766859