Isomorphisms of tensor algebras arising from weighted partial systems
HTML articles powered by AMS MathViewer
- by Adam Dor-On PDF
- Trans. Amer. Math. Soc. 370 (2018), 3507-3549 Request permission
Abstract:
We continue the study of isomorphisms of tensor algebras associated to $C^*$-correspondences in the sense of Muhly and Solel. Inspired by recent work of Davidson, Ramsey, and Shalit, we solve isomorphism problems for tensor algebras arising from weighted partial dynamical systems. We provide complete bounded / isometric classification results for tensor algebras arising from weighted partial systems, both in terms of the $C^*$-correspondences associated to them and in terms of the original dynamics. We use this to show that the isometric isomorphism and algebraic / bounded isomorphism problems are two distinct problems that require separate criteria to be solved. Our methods yield alternative proofs to classification results for Peters’ semi-crossed product due to Davidson and Katsoulis and for multiplicity-free graph tensor algebras due to Katsoulis, Kribs, and Solel.References
- William B. Arveson, Operator algebras and measure preserving automorphisms, Acta Math. 118 (1967), 95–109. MR 210866, DOI 10.1007/BF02392478
- William B. Arveson and Keith B. Josephson, Operator algebras and measure preserving automorphisms. II, J. Functional Analysis 4 (1969), 100–134. MR 0250081, DOI 10.1016/0022-1236(69)90025-1
- Michael F. Barnsley, Fractals everywhere, 2nd ed., Academic Press Professional, Boston, MA, 1993. Revised with the assistance of and with a foreword by Hawley Rising, III. MR 1231795
- Michael Fielding Barnsley, Superfractals, Cambridge University Press, Cambridge, 2006. MR 2254477, DOI 10.1017/CBO9781107590168
- David P. Blecher and Christian Le Merdy, Operator algebras and their modules—an operator space approach, London Mathematical Society Monographs. New Series, vol. 30, The Clarendon Press, Oxford University Press, Oxford, 2004. Oxford Science Publications. MR 2111973, DOI 10.1093/acprof:oso/9780198526599.001.0001
- Kenneth R. Davidson and Elias G. Katsoulis, Isomorphisms between topological conjugacy algebras, J. Reine Angew. Math. 621 (2008), 29–51. MR 2431249, DOI 10.1515/CRELLE.2008.057
- Kenneth R. Davidson and Elias G. Katsoulis, Operator algebras for multivariable dynamics, Mem. Amer. Math. Soc. 209 (2011), no. 982, viii+53. MR 2752983, DOI 10.1090/S0065-9266-10-00615-0
- Kenneth R. Davidson and Evgenios T. A. Kakariadis, Conjugate dynamical systems on $\textrm {C}^\ast$-algebras, Int. Math. Res. Not. IMRN 5 (2014), 1289–1311. MR 3178599, DOI 10.1093/imrn/rns253
- Kenneth R. Davidson and Jean Roydor, Isomorphisms of tensor algebras of topological graphs, Indiana Univ. Math. J. 60 (2011), no. 4, 1249–1266. MR 2975343, DOI 10.1512/iumj.2011.60.4816
- Kenneth R. Davidson, Christopher Ramsey, and Orr Moshe Shalit, The isomorphism problem for some universal operator algebras, Adv. Math. 228 (2011), no. 1, 167–218. MR 2822231, DOI 10.1016/j.aim.2011.05.015
- Kenneth R. Davidson, Christopher Ramsey, and Orr Moshe Shalit, Operator algebras for analytic varieties, Trans. Amer. Math. Soc. 367 (2015), no. 2, 1121–1150. MR 3280039, DOI 10.1090/S0002-9947-2014-05888-1
- A. P. Donsig, T. D. Hudson, and E. G. Katsoulis, Algebraic isomorphisms of limit algebras, Trans. Amer. Math. Soc. 353 (2001), no. 3, 1169–1182. MR 1804417, DOI 10.1090/S0002-9947-00-02714-8
- Adam Dor-On and Daniel Markiewicz, Operator algebras and subproduct systems arising from stochastic matrices, J. Funct. Anal. 267 (2014), no. 4, 1057–1120. MR 3217058, DOI 10.1016/j.jfa.2014.05.004
- Maxim Gurevich, Subproduct systems over $\Bbb N\times \Bbb N$, J. Funct. Anal. 262 (2012), no. 10, 4270–4301. MR 2900467, DOI 10.1016/j.jfa.2012.02.017
- Donald W. Hadwin and Thomas B. Hoover, Operator algebras and the conjugacy of transformations, J. Funct. Anal. 77 (1988), no. 1, 112–122. MR 930394, DOI 10.1016/0022-1236(88)90080-8
- Michael Hartz, On the isomorphism problem for multiplier algebras of Nevanlinna-Pick spaces, Canad. J. Math. 69 (2017), no. 1, 54–106. MR 3589854, DOI 10.4153/CJM-2015-050-6
- John E. Hutchinson, Fractals and self-similarity, Indiana Univ. Math. J. 30 (1981), no. 5, 713–747. MR 625600, DOI 10.1512/iumj.1981.30.30055
- Marius Ionescu, Paul S. Muhly, and Victor Vega, Markov operators and $C^*$-algebras, Houston J. Math. 38 (2012), no. 3, 775–798. MR 2970658
- Evgenios T. A. Kakariadis and Elias G. Katsoulis, Isomorphism invariants for multivariable $\textrm {C}^\ast$-dynamics, J. Noncommut. Geom. 8 (2014), no. 3, 771–787. MR 3261601, DOI 10.4171/JNCG/170
- Evgenios Kakariadis and Orr Moshe Shalit, On operator algebras associated with monomial ideals in noncommuting variables, arXiv:1501.06495 [math.OA], 2015.
- Elias Katsoulis and David W. Kribs, Isomorphisms of algebras associated with directed graphs, Math. Ann. 330 (2004), no. 4, 709–728. MR 2102309, DOI 10.1007/s00208-004-0566-6
- Takeshi Katsura, A class of $C^\ast$-algebras generalizing both graph algebras and homeomorphism $C^\ast$-algebras. I. Fundamental results, Trans. Amer. Math. Soc. 356 (2004), no. 11, 4287–4322. MR 2067120, DOI 10.1090/S0002-9947-04-03636-0
- Takeshi Katsura, Cuntz-Krieger algebras and $C^\ast$-algebras of topological graphs, Acta Appl. Math. 108 (2009), no. 3, 617–624. MR 2563503, DOI 10.1007/s10440-009-9535-0
- Alex Kumjian and David Pask, Higher rank graph $C^\ast$-algebras, New York J. Math. 6 (2000), 1–20. MR 1745529
- B. K. Kwasniewski. Exel’s crossed product and crossed products by completely positive maps. Arxiv preprint, arXiv:1404.4929v3 [math.OA], v3, 2014.
- E. C. Lance, Hilbert $C^*$-modules, London Mathematical Society Lecture Note Series, vol. 210, Cambridge University Press, Cambridge, 1995. A toolkit for operator algebraists. MR 1325694, DOI 10.1017/CBO9780511526206
- V. M. Manuilov and E. V. Troitsky, Hilbert $C^*$-modules, Translations of Mathematical Monographs, vol. 226, American Mathematical Society, Providence, RI, 2005. Translated from the 2001 Russian original by the authors. MR 2125398, DOI 10.1090/mmono/226
- R. Daniel Mauldin and Mariusz Urbański, Graph directed Markov systems, Cambridge Tracts in Mathematics, vol. 148, Cambridge University Press, Cambridge, 2003. Geometry and dynamics of limit sets. MR 2003772, DOI 10.1017/CBO9780511543050
- R. Daniel Mauldin and S. C. Williams, Hausdorff dimension in graph directed constructions, Trans. Amer. Math. Soc. 309 (1988), no. 2, 811–829. MR 961615, DOI 10.1090/S0002-9947-1988-0961615-4
- Paul S. Muhly and Baruch Solel, Tensor algebras over $C^*$-correspondences: representations, dilations, and $C^*$-envelopes, J. Funct. Anal. 158 (1998), no. 2, 389–457. MR 1648483, DOI 10.1006/jfan.1998.3294
- Paul S. Muhly and Baruch Solel, Tensor algebras, induced representations, and the Wold decomposition, Canad. J. Math. 51 (1999), no. 4, 850–880. MR 1701345, DOI 10.4153/CJM-1999-037-8
- Paul S. Muhly and Baruch Solel, On the Morita equivalence of tensor algebras, Proc. London Math. Soc. (3) 81 (2000), no. 1, 113–168. MR 1757049, DOI 10.1112/S0024611500012405
- Paul S. Muhly and Mark Tomforde, Topological quivers, Internat. J. Math. 16 (2005), no. 7, 693–755. MR 2158956, DOI 10.1142/S0129167X05003077
- William L. Paschke, Inner product modules over $B^{\ast }$-algebras, Trans. Amer. Math. Soc. 182 (1973), 443–468. MR 355613, DOI 10.1090/S0002-9947-1973-0355613-0
- Justin Peters, Semicrossed products of $C^\ast$-algebras, J. Funct. Anal. 59 (1984), no. 3, 498–534. MR 769379, DOI 10.1016/0022-1236(84)90063-6
- Christopher Ramsey, Automorphisms of free products and their application to multivariable dynamics, Indiana Univ. Math. J. 65 (2016), no. 3, 899–924. MR 3528823, DOI 10.1512/iumj.2016.65.5822
- E. Seneta, Non-negative matrices and Markov chains, Springer Series in Statistics, Springer, New York, 2006. Revised reprint of the second (1981) edition [Springer-Verlag, New York; MR0719544]. MR 2209438
- Allan M. Sinclair, Automatic continuity of linear operators, London Mathematical Society Lecture Note Series, No. 21, Cambridge University Press, Cambridge-New York-Melbourne, 1976. MR 0487371, DOI 10.1017/CBO9780511662355
- Baruch Solel, You can see the arrows in a quiver operator algebra, J. Aust. Math. Soc. 77 (2004), no. 1, 111–122. MR 2069028, DOI 10.1017/S1446788700010181
- Radu Zaharopol, Invariant probabilities of Markov-Feller operators and their supports, Frontiers in Mathematics, Birkhäuser Verlag, Basel, 2005. MR 2128542, DOI 10.1007/b98076
Additional Information
- Adam Dor-On
- Affiliation: Department of Pure Mathematics, University of Waterloo, Waterloo, Ontario, Canada
- Address at time of publication: Department of Mathematics, Technion - Israel institute of Technology, Haifa, 3200003, Israel
- Email: adoron@uwaterloo.ca
- Received by editor(s): July 29, 2015
- Received by editor(s) in revised form: August 11, 2016
- Published electronically: January 18, 2018
- Additional Notes: The author was partially supported by an Ontario Trillium Scholarship
- © Copyright 2018 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 370 (2018), 3507-3549
- MSC (2010): Primary 47L30, 46K50, 46H20; Secondary 46L08, 37A30
- DOI: https://doi.org/10.1090/tran/7045
- MathSciNet review: 3766857