Mather–Jacobian singularities under generic linkage
HTML articles powered by AMS MathViewer
- by Wenbo Niu PDF
- Trans. Amer. Math. Soc. 370 (2018), 4015-4028 Request permission
Abstract:
In this paper, we prove that Mather–Jacobian (MJ) singularities are preserved under the process of generic linkage. More precisely, let $X$ be a variety with MJ-canonical (resp., MJ-log canonical) singularities. Then a generic link of $X$ is also MJ-canonical (resp., MJ-log canonical). This further leads us to a result on minimal log discrepancies under generic linkage.References
- Marc Chardin and Bernd Ulrich, Liaison and Castelnuovo-Mumford regularity, Amer. J. Math. 124 (2002), no. 6, 1103–1124. MR 1939782
- Tommaso de Fernex and Roi Docampo, Jacobian discrepancies and rational singularities, J. Eur. Math. Soc. (JEMS) 16 (2014), no. 1, 165–199. MR 3141731, DOI 10.4171/JEMS/430
- Lawrence Ein and Shihoko Ishii, Singularities with respect to Mather-Jacobian discrepancies, Commutative algebra and noncommutative algebraic geometry. Vol. II, Math. Sci. Res. Inst. Publ., vol. 68, Cambridge Univ. Press, New York, 2015, pp. 125–168. MR 3496863
- Lawrence Ein, Shihoko Ishii, and Mircea Mustata. Multiplier ideals via Mather discrepancy. arXiv:1107.2192, 2011.
- Osamu Fujino and Yoshinori Gongyo, On canonical bundle formulas and subadjunctions, Michigan Math. J. 61 (2012), no. 2, 255–264. MR 2944479, DOI 10.1307/mmj/1339011526
- Craig Huneke and Bernd Ulrich, Divisor class groups and deformations, Amer. J. Math. 107 (1985), no. 6, 1265–1303 (1986). MR 815763, DOI 10.2307/2374407
- Craig Huneke and Bernd Ulrich, The structure of linkage, Ann. of Math. (2) 126 (1987), no. 2, 277–334. MR 908149, DOI 10.2307/1971402
- Craig Huneke and Bernd Ulrich, Algebraic linkage, Duke Math. J. 56 (1988), no. 3, 415–429. MR 948528, DOI 10.1215/S0012-7094-88-05618-9
- Craig Huneke and Bernd Ulrich, Residual intersections, J. Reine Angew. Math. 390 (1988), 1–20. MR 953673, DOI 10.1515/crll.1988.390.1
- Shihoko Ishii, Mather discrepancy and the arc spaces, Ann. Inst. Fourier (Grenoble) 63 (2013), no. 1, 89–111 (English, with English and French summaries). MR 3089196, DOI 10.5802/aif.2756
- Mark Johnson and Bernd Ulrich, Serre’s condition $R_k$ for sums of geometric links, Acta Math. Vietnam. 40 (2015), no. 3, 393–401. MR 3395646, DOI 10.1007/s40306-015-0144-x
- Joseph Lipman, On the Jacobian ideal of the module of differentials, Proc. Amer. Math. Soc. 21 (1969), 422–426. MR 237511, DOI 10.1090/S0002-9939-1969-0237511-0
- Robert Lazarsfeld and Prabhakar Rao, Linkage of general curves of large degree, Algebraic geometry—open problems (Ravello, 1982) Lecture Notes in Math., vol. 997, Springer, Berlin, 1983, pp. 267–289. MR 714753, DOI 10.1007/BFb0061648
- Juan C. Migliore, Introduction to liaison theory and deficiency modules, Progress in Mathematics, vol. 165, Birkhäuser Boston, Inc., Boston, MA, 1998. MR 1712469, DOI 10.1007/978-1-4612-1794-7
- Wenbo Niu, Singularities of generic linkage of algebraic varieties, Amer. J. Math. 136 (2014), no. 6, 1665–1691. MR 3282984, DOI 10.1353/ajm.2014.0040
- Lawrence Ein, Multiplier ideals, vanishing theorems and applications, Algebraic geometry—Santa Cruz 1995, Proc. Sympos. Pure Math., vol. 62, Amer. Math. Soc., Providence, RI, 1997, pp. 203–219. MR 1492524, DOI 10.1090/s0894-0347-97-00223-3
- C. Peskine and L. Szpiro, Liaison des variétés algébriques. I, Invent. Math. 26 (1974), 271–302 (French). MR 364271, DOI 10.1007/BF01425554
Additional Information
- Wenbo Niu
- Affiliation: Department of Mathematical Sciences, University of Arkansas, Fayetteville, Arkansas 72701
- MR Author ID: 776949
- Email: wenboniu@uark.edu
- Received by editor(s): February 29, 2016
- Received by editor(s) in revised form: August 25, 2016, and September 10, 2016
- Published electronically: December 20, 2017
- Additional Notes: This work was partially supported by AMS-Simons Travel Grants
- © Copyright 2017 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 370 (2018), 4015-4028
- MSC (2010): Primary 13C40, 14M06
- DOI: https://doi.org/10.1090/tran/7065
- MathSciNet review: 3811518