The regularity of Diophantine quadruples
Authors:
Yasutsugu Fujita and Takafumi Miyazaki
Journal:
Trans. Amer. Math. Soc. 370 (2018), 3803-3831
MSC (2010):
Primary 11D45; Secondary 11D09, 11B37, 11J68, 11J86
DOI:
https://doi.org/10.1090/tran/7069
Published electronically:
December 27, 2017
MathSciNet review:
3811510
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: A set of positive integers is called a Diophantine tuple if the product of any two elements in the set increased by the unity is a perfect square. A conjecture on the regularity of Diophantine quadruples asserts that any Diophantine triple can be uniquely extended to a Diophantine quadruple by joining an element exceeding the maximal element of the triple. The problem is reduced to studying an equation expressed as the coincidence of two linear recurrence sequences with initial terms composed of the fundamental solutions of some Pellian equations. In this paper, we determine the values of those initial terms completely and obtain finiteness results on the number of solutions of the equation. As one of the applications to the problem on the regularity of Diophantine quadruples, we show in general that the number of ways of extending any given Diophantine triple is at most $11$.
- Joseph Arkin, V. E. Hoggatt Jr., and E. G. Straus, On Euler’s solution of a problem of Diophantus, Fibonacci Quart. 17 (1979), no. 4, 333–339. MR 550175
- A. Baker and H. Davenport, The equations $3x^{2}-2=y^{2}$ and $8x^{2}-7=z^{2}$, Quart. J. Math. Oxford Ser. (2) 20 (1969), 129–137. MR 248079, DOI https://doi.org/10.1093/qmath/20.1.129
- Michael A. Bennett, On the number of solutions of simultaneous Pell equations, J. Reine Angew. Math. 498 (1998), 173–199. MR 1629862, DOI https://doi.org/10.1515/crll.1998.049
- Michael A. Bennett, Mihai Cipu, Maurice Mignotte, and Ryotaro Okazaki, On the number of solutions of simultaneous Pell equations. II, Acta Arith. 122 (2006), no. 4, 407–417. MR 2234424, DOI https://doi.org/10.4064/aa122-4-4
- Yann Bugeaud, Andrej Dujella, and Maurice Mignotte, On the family of Diophantine triples $\{k-1,k+1,16k^3-4k\}$, Glasg. Math. J. 49 (2007), no. 2, 333–344. MR 2347264, DOI https://doi.org/10.1017/S0017089507003564
- Mihai Cipu, Further remarks on Diophantine quintuples, Acta Arith. 168 (2015), no. 3, 201–219. MR 3342321, DOI https://doi.org/10.4064/aa168-3-1
- Mihai Cipu, Alan Filipin, and Yasutsugu Fujita, Bounds for Diophantine quintuples II, Publ. Math. Debrecen 88 (2016), no. 1-2, 59–78. MR 3452164, DOI https://doi.org/10.5486/PMD.2015.7257
- Mihai Cipu and Yasutsugu Fujita, Bounds for Diophantine quintuples, Glas. Mat. Ser. III 50(70) (2015), no. 1, 25–34. MR 3361263, DOI https://doi.org/10.3336/gm.50.1.03
- M. Cipu, Y. Fujita, and M. Mignotte, Two-parameter families of uniquely extendable Diophantine triples, Sci. China Math., to appear, DOI 10.1007/s11425-015-0638-0.
- Mihai Cipu and Maurice Mignotte, On the number of solutions to systems of Pell equations, J. Number Theory 125 (2007), no. 2, 356–392. MR 2332594, DOI https://doi.org/10.1016/j.jnt.2006.09.016
- Mihai Cipu and Tim Trudgian, Searching for Diophantine quintuples, Acta Arith. 173 (2016), no. 4, 365–382. MR 3512860, DOI https://doi.org/10.4064/aa8254-2-2016
- Andrej Dujella, The problem of the extension of a parametric family of Diophantine triples, Publ. Math. Debrecen 51 (1997), no. 3-4, 311–322. MR 1485226
- Andrej Dujella, An absolute bound for the size of Diophantine $m$-tuples, J. Number Theory 89 (2001), no. 1, 126–150. MR 1838708, DOI https://doi.org/10.1006/jnth.2000.2627
- Andrej Dujella, There are only finitely many Diophantine quintuples, J. Reine Angew. Math. 566 (2004), 183–214. MR 2039327, DOI https://doi.org/10.1515/crll.2004.003
- Andrej Dujella, On the number of Diophantine $m$-tuples, Ramanujan J. 15 (2008), no. 1, 37–46. MR 2372791, DOI https://doi.org/10.1007/s11139-007-9066-0
- A. Dujella, Diophantine $m$-tuples, http://web.math.pmf.unizg.hr/ duje/dtuples.html.
- Andrej Dujella and Attila Pethő, A generalization of a theorem of Baker and Davenport, Quart. J. Math. Oxford Ser. (2) 49 (1998), no. 195, 291–306. MR 1645552, DOI https://doi.org/10.1093/qjmath/49.195.291
- Alan Filipin and Yasutsugu Fujita, The number of Diophantine quintuples II, Publ. Math. Debrecen 82 (2013), no. 2, 293–308. MR 3034347, DOI https://doi.org/10.5486/PMD.2013.5200
- Alan Filipin, Yasutsugu Fujita, and Alain Togbé, The extendibility of Diophantine pairs I: the general case, Glas. Mat. Ser. III 49(69) (2014), no. 1, 25–36. MR 3224475, DOI https://doi.org/10.3336/gm.49.1.03
- Alan Filipin, Yasutsugu Fujita, and Alain Togbé, The extendibility of Diophantine pairs II: Examples, J. Number Theory 145 (2014), 604–631. MR 3253321, DOI https://doi.org/10.1016/j.jnt.2014.06.020
- Yasutsugu Fujita, The extensibility of Diophantine pairs $\{k-1,k+1\}$, J. Number Theory 128 (2008), no. 2, 322–353. MR 2380324, DOI https://doi.org/10.1016/j.jnt.2007.03.013
- Yasutsugu Fujita, Any Diophantine quintuple contains a regular Diophantine quadruple, J. Number Theory 129 (2009), no. 7, 1678–1697. MR 2524189, DOI https://doi.org/10.1016/j.jnt.2009.01.001
- Yasutsugu Fujita, The number of Diophantine quintuples, Glas. Mat. Ser. III 45(65) (2010), no. 1, 15–29. MR 2646434, DOI https://doi.org/10.3336/gm.45.1.02
- P. E. Gibbs, Computer Bulletin 17 (1978), 16.
- Bo He and Alain Togbé, On the family of Diophantine triples $\{k+1,4k,9k+3\}$, Period. Math. Hungar. 58 (2009), no. 1, 59–70. MR 2487246, DOI https://doi.org/10.1007/s10998-009-9059-6
- B. He and A. Togbé, On a family of Diophantine triples $\{k,A^2k+2A,(A+1)^2k+2(A+1)\}$ with two parameters, Acta Math. Hungar. 124 (2009), no. 1-2, 99–113. MR 2520620, DOI https://doi.org/10.1007/s10474-009-8155-5
- Bo He and Alain Togbé, On a family of Diophantine triples $\{k,A^2k+2A,(A+1)^2k+2(A+1)\}$ with two parameters II, Period. Math. Hungar. 64 (2012), no. 1, 1–10. MR 2886402, DOI https://doi.org/10.1007/s10998-012-9001-z
- Burton W. Jones, A second variation on a problem of Diophantus and Davenport, Fibonacci Quart. 16 (1978), no. 2, 155–165. MR 498978
- Michel Laurent, Linear forms in two logarithms and interpolation determinants. II, Acta Arith. 133 (2008), no. 4, 325–348. MR 2457264, DOI https://doi.org/10.4064/aa133-4-3
- D. W. Masser and J. H. Rickert, Simultaneous Pell equations, J. Number Theory 61 (1996), no. 1, 52–66. MR 1418319, DOI https://doi.org/10.1006/jnth.1996.0137
- E. M. Matveev, An explicit lower bound for a homogeneous rational linear form in logarithms of algebraic numbers. II, Izv. Ross. Akad. Nauk Ser. Mat. 64 (2000), no. 6, 125–180 (Russian, with Russian summary); English transl., Izv. Math. 64 (2000), no. 6, 1217–1269. MR 1817252, DOI https://doi.org/10.1070/IM2000v064n06ABEH000314
- John H. Rickert, Simultaneous rational approximations and related Diophantine equations, Math. Proc. Cambridge Philos. Soc. 113 (1993), no. 3, 461–472. MR 1207511, DOI https://doi.org/10.1017/S0305004100076118
- Tim Trudgian, Bounds on the number of Diophantine quintuples, J. Number Theory 157 (2015), 233–249. MR 3373240, DOI https://doi.org/10.1016/j.jnt.2015.05.004
- Pingzhi Yuan, On the number of solutions of simultaneous Pell equations, Acta Arith. 101 (2002), no. 3, 215–221. MR 1875840, DOI https://doi.org/10.4064/aa101-3-2
Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 11D45, 11D09, 11B37, 11J68, 11J86
Retrieve articles in all journals with MSC (2010): 11D45, 11D09, 11B37, 11J68, 11J86
Additional Information
Yasutsugu Fujita
Affiliation:
Department of Mathematics, College of Industrial Technology, Nihon University, 2-11-1 Shin-ei, Narashino, Chiba, Japan
MR Author ID:
720213
ORCID:
0000-0001-7985-9667
Email:
fujita.yasutsugu@nihon-u.ac.jp
Takafumi Miyazaki
Affiliation:
Division of Pure and Applied Science, Faculty of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma, Japan
MR Author ID:
887630
Email:
tmiyazaki@gunma-u.ac.jp
Keywords:
Diophantine tuples,
system of Pellian equations,
simultaneous rational approximation of irrationals,
linear forms in logarithms
Received by editor(s):
January 29, 2016
Received by editor(s) in revised form:
August 23, 2016
Published electronically:
December 27, 2017
Additional Notes:
The first author was supported by JSPS KAKENHI Grant Number 16K05079
The second author was supported by JSPS KAKENHI Grant Number 16K17557
Article copyright:
© Copyright 2017
American Mathematical Society