Finding bases of uncountable free abelian groups is usually difficult
Authors:
Noam Greenberg, Dan Turetsky and Linda Brown Westrick
Journal:
Trans. Amer. Math. Soc. 370 (2018), 4483-4508
MSC (2010):
Primary 03C57; Secondary 03D60
DOI:
https://doi.org/10.1090/tran/7232
Published electronically:
December 14, 2017
MathSciNet review:
3811535
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: We investigate effective properties of uncountable free abelian groups. We show that identifying free abelian groups and constructing bases for such groups is often computationally hard, depending on the cardinality. For example, we show, under the assumption $V=L$, that there is a first-order definable free abelian group with no first-order definable basis.
- J. E. Baumgartner, L. A. Harrington, and E. M. Kleinberg, Adding a closed unbounded set, J. Symbolic Logic 41 (1976), no. 2, 481–482. MR 434818, DOI https://doi.org/10.2307/2272248
- William W. Boone, The word problem, Proc. Nat. Acad. Sci. U.S.A. 44 (1958), 1061–1065. MR 101267, DOI https://doi.org/10.1073/pnas.44.10.1061
- Jacob Carson, Jesse Johnson, Julia Knight, Karen Lange, Charles McCoy, and John Wallbaum, The arithmetical hierarchy in the setting of $\omega _1$, Computability 2 (2013), no. 2, 93–105. MR 3153995, DOI https://doi.org/10.3233/COM-13022
- M. Dehn, Über unendliche diskontinuierliche Gruppen, Math. Ann. 71 (1911), no. 1, 116–144 (German). MR 1511645, DOI https://doi.org/10.1007/BF01456932
- Rodney Downey and Alexander G. Melnikov, Effectively categorical abelian groups, J. Algebra 373 (2013), 223–248. MR 2995024, DOI https://doi.org/10.1016/j.jalgebra.2012.09.020
- Paul C. Eklof, On the existence of $\kappa $-free abelian groups, Proc. Amer. Math. Soc. 47 (1975), 65–72. MR 379694, DOI https://doi.org/10.1090/S0002-9939-1975-0379694-0
- Paul C. Eklof, Methods of logic in abelian group theory, Abelian group theory (Proc. Second New Mexico State Univ. Conf., Las Cruces, N.M., 1976) Springer, Berlin, 1977, pp. 251–269. Lecture Notes in Math., Vol. 616. MR 0465854
- Paul C. Eklof, Shelah’s singular compactness theorem, Publ. Mat. 52 (2008), no. 1, 3–18. MR 2384838, DOI https://doi.org/10.5565/PUBLMAT_52108_01
- Paul C. Eklof and Alan H. Mekler, Almost free modules, Revised edition, North-Holland Mathematical Library, vol. 65, North-Holland Publishing Co., Amsterdam, 2002. Set-theoretic methods. MR 1914985
- Ekaterina Fokina, Sy-David Friedman, Julia Knight, and Russell Miller, Classes of structures with universe a subset of $\omega _1$, J. Logic Comput. 23 (2013), no. 6, 1249–1265. MR 3144883, DOI https://doi.org/10.1093/logcom/ext042
- Sy D. Friedman, Negative solutions to Post’s problem. II, Ann. of Math. (2) 113 (1981), no. 1, 25–43. MR 604041, DOI https://doi.org/10.2307/1971132
- A. Fröhlich and J. C. Shepherdson, Effective procedures in field theory, Philos. Trans. Roy. Soc. London Ser. A 248 (1956), 407–432. MR 74349, DOI https://doi.org/10.1098/rsta.1956.0003
- László Fuchs, Infinite abelian groups. Vol. I, Pure and Applied Mathematics, Vol. 36, Academic Press, New York-London, 1970. MR 0255673
- Noam Greenberg, The role of true finiteness in the admissible recursively enumerable degrees, Mem. Amer. Math. Soc. 181 (2006), no. 854, vi+99. MR 2213065, DOI https://doi.org/10.1090/memo/0854
- Noam Greenberg, Joel David Hamkins, Denis Hirschfeldt, and Russell Miller (eds.), Effective mathematics of the uncountable, Lecture Notes in Logic, vol. 41, Association for Symbolic Logic, La Jolla, CA; Cambridge University Press, Cambridge, 2013. MR 3185552
- Noam Greenberg, Asher M. Kach, Steffen Lempp, and Daniel D. Turetsky, Computability and uncountable linear orders I: Computable categoricity, J. Symb. Log. 80 (2015), no. 1, 116–144. MR 3320586, DOI https://doi.org/10.1017/jsl.2014.68
- Noam Greenberg, Asher M. Kach, Steffen Lempp, and Daniel D. Turetsky, Computability and uncountable linear orders II: Degree spectra, J. Symb. Log. 80 (2015), no. 1, 145–178. MR 3320587, DOI https://doi.org/10.1017/jsl.2014.69
- Noam Greenberg and Julia F. Knight, Computable structure theory on $\omega _1$ using admissibility, Effective mathematics of the uncountable, Lect. Notes Log., vol. 41, Assoc. Symbol. Logic, La Jolla, CA, 2013, pp. 50–80. MR 3205054
- Noam Greenberg, Julia F. Knight, Alexander G. Melnikov, and Daniel D. Turetsky, Computable categoricity for uncountable structures, in preparation.
- Grete Hermann, Die Frage der endlich vielen Schritte in der Theorie der Polynomideale, Math. Ann. 95 (1926), no. 1, 736–788 (German). MR 1512302, DOI https://doi.org/10.1007/BF01206635
- G. Higman, Subgroups of finitely presented groups, Proc. Roy. Soc. London Ser. A 262 (1961), 455–475. MR 130286, DOI https://doi.org/10.1098/rspa.1961.0132
- Paul Hill, New criteria for freeness in abelian groups, Trans. Amer. Math. Soc. 182 (1973), 201–209. MR 325805, DOI https://doi.org/10.1090/S0002-9947-1973-0325805-5
- R. Björn Jensen, The fine structure of the constructible hierarchy, Ann. Math. Logic 4 (1972), 229–308; erratum, ibid. 4 (1972), 443. With a section by Jack Silver. MR 309729, DOI https://doi.org/10.1016/0003-4843%2872%2990001-0
- Peter Koepke, Ordinal computability, Mathematical theory and computational practice, Lecture Notes in Comput. Sci., vol. 5635, Springer, Berlin, 2009, pp. 280–289. MR 2545902, DOI https://doi.org/10.1007/978-3-642-03073-4_29
- A. I. Mal′cev, Constructive algebras. I, Uspehi Mat. Nauk 16 (1961), no. 3 (99), 3–60 (Russian). MR 0151377
- G. Metakides and A. Nerode, Recursively enumerable vector spaces, Ann. Math. Logic 11 (1977), no. 2, 147–171. MR 446936, DOI https://doi.org/10.1016/0003-4843%2877%2990015-8
- P. S. Novikov, The unsolvability of the problem of the equivalence of words in a group and several other problems in algebra, Czechoslovak Math. J. 6(81) (1956), 450–454 (Russian, with English summary). MR 121395
- L. Pontrjagin, The theory of topological commutative groups, Ann. of Math. (2) 35 (1934), no. 2, 361–388. MR 1503168, DOI https://doi.org/10.2307/1968438
- Michael O. Rabin, Computable algebra, general theory and theory of computable fields, Trans. Amer. Math. Soc. 95 (1960), 341–360. MR 113807, DOI https://doi.org/10.1090/S0002-9947-1960-0113807-4
- Gerald E. Sacks, Higher recursion theory, Perspectives in Mathematical Logic, Springer-Verlag, Berlin, 1990. MR 1080970
- Saharon Shelah, Infinite abelian groups, Whitehead problem and some constructions, Israel J. Math. 18 (1974), 243–256. MR 357114, DOI https://doi.org/10.1007/BF02757281
- Saharon Shelah, A compactness theorem for singular cardinals, free algebras, Whitehead problem and transversals, Israel J. Math. 21 (1975), no. 4, 319–349. MR 389579, DOI https://doi.org/10.1007/BF02757993
- Bartel L. van der Waerden, Eine Bemerkung über die Unzerlegbarkeit von Polynomen, Math. Ann. 102 (1930), no. 1, 738–739 (German). MR 1512605, DOI https://doi.org/10.1007/BF01782374
Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 03C57, 03D60
Retrieve articles in all journals with MSC (2010): 03C57, 03D60
Additional Information
Noam Greenberg
Affiliation:
School of Mathematics and Statistics, Victoria University of Wellington, Wellington, New Zealand
MR Author ID:
757288
ORCID:
0000-0003-2917-3848
Email:
greenberg@msor.vuw.ac.nz
Dan Turetsky
Affiliation:
School of Mathematics and Statistics, Victoria University of Wellington, Wellington, New Zealand
MR Author ID:
894314
Email:
dan.turetsky@vuw.ac.nz
Linda Brown Westrick
Affiliation:
School of Mathematics and Statistics, Victoria University of Wellington, Wellington, New Zealand
Address at time of publication:
Department of Mathematics, University of Connecticut, 341 Mansfield Road U1009, Storrs, Connecticut 06269-1009
Email:
westrick@uconn.edu
Received by editor(s):
January 23, 2016
Received by editor(s) in revised form:
March 7, 2017
Published electronically:
December 14, 2017
Additional Notes:
The first author was supported by the Marsden Fund, a Rutherford Discovery Fellowship from the Royal Society of New Zealand, and by the Templeton Foundation via the Turing centenary project “Mind, Mechanism and Mathematics”.
The third author was supported by the Rutherford Discovery Fellowship as a postdoctoral fellow.
Article copyright:
© Copyright 2017
American Mathematical Society