Frobenius reciprocity and the Haagerup tensor product
HTML articles powered by AMS MathViewer
- by Tyrone Crisp PDF
- Trans. Amer. Math. Soc. 370 (2018), 6955-6972 Request permission
Abstract:
In the context of operator-space modules over $C^*$-algebras, we give a complete characterisation of those $C^*$-correspondences whose associated Haagerup tensor product functors admit left adjoints. The characterisation, which builds on previous joint work with N. Higson, exhibits a close connection between the notions of adjoint operators and adjoint functors. As an application, we prove a Frobenius reciprocity theorem for representations of locally compact groups on operator spaces: the functor of unitary induction for a closed subgroup $H$ of a locally compact group $G$ admits a left adjoint in this setting if and only if $H$ is cocompact in $G$. The adjoint functor is given by the Haagerup tensor product with the operator-theoretic adjoint of Rieffel’s induction bimodule.References
- J. N. Bernstein, Second adjointness for representations of reductive $p$-adic groups, draft available at http://www.math.uchicago.edu/~mitya/langlands.html, 1987.
- M. B. Bekka, E. Kaniuth, A. T. Lau, and G. Schlichting, Weak$^*$-closedness of subspaces of Fourier-Stieltjes algebras and weak$^*$-continuity of the restriction map, Trans. Amer. Math. Soc. 350 (1998), no. 6, 2277–2296. MR 1401762, DOI 10.1090/S0002-9947-98-01835-2
- David P. Blecher, On Morita’s fundamental theorem for $C^\ast$-algebras, Math. Scand. 88 (2001), no. 1, 137–153. MR 1813525, DOI 10.7146/math.scand.a-14319
- David P. Blecher and Christian Le Merdy, Operator algebras and their modules—an operator space approach, London Mathematical Society Monographs. New Series, vol. 30, The Clarendon Press, Oxford University Press, Oxford, 2004. Oxford Science Publications. MR 2111973, DOI 10.1093/acprof:oso/9780198526599.001.0001
- Pierre Clare, Tyrone Crisp, and Nigel Higson, Adjoint functors between categories of Hilbert $C^\ast$-modules, J. Inst. Math. Jussieu 17 (2018), no. 2, 453–488. MR 3773277, DOI 10.1017/S1474748016000074
- Pierre Clare, Tyrone Crisp, and Nigel Higson, Parabolic induction and restriction via $C^*$-algebras and Hilbert $C^*$-modules, Compos. Math. 152 (2016), no. 6, 1286–1318. MR 3518312, DOI 10.1112/S0010437X15007824
- Tyrone Crisp and Nigel Higson, Parabolic induction, categories of representations and operator spaces, Operator algebras and their applications, Contemp. Math., vol. 671, Amer. Math. Soc., Providence, RI, 2016, pp. 85–107. MR 3546679, DOI 10.1090/conm/671/13504
- Tyrone Crisp and Nigel Higson, A second adjoint theorem for $\textrm {SL}(2,\Bbb R)$, Around Langlands correspondences, Contemp. Math., vol. 691, Amer. Math. Soc., Providence, RI, 2017, pp. 73–101. MR 3666051, DOI 10.1090/conm/691/13894
- Pierre Clare, Hilbert modules associated to parabolically induced representations, J. Operator Theory 69 (2013), no. 2, 483–509. MR 3053351, DOI 10.7900/jot.2011feb07.1906
- Charles W. Curtis, Pioneers of representation theory: Frobenius, Burnside, Schur, and Brauer, History of Mathematics, vol. 15, American Mathematical Society, Providence, RI; London Mathematical Society, London, 1999. MR 1715145, DOI 10.1016/s0370-2693(99)01288-5
- Pierre Eymard, L’algèbre de Fourier d’un groupe localement compact, Bull. Soc. Math. France 92 (1964), 181–236 (French). MR 228628, DOI 10.24033/bsmf.1607
- J. M. G. Fell, Weak containment and induced representations of groups. II, Trans. Amer. Math. Soc. 110 (1964), 424–447. MR 159898, DOI 10.1090/S0002-9947-1964-0159898-X
- Tsuyoshi Kajiwara, Claudia Pinzari, and Yasuo Watatani, Jones index theory for Hilbert $C^*$-bimodules and its equivalence with conjugation theory, J. Funct. Anal. 215 (2004), no. 1, 1–49. MR 2085108, DOI 10.1016/j.jfa.2003.09.008
- George W. Mackey, Imprimitivity for representations of locally compact groups. I, Proc. Nat. Acad. Sci. U.S.A. 35 (1949), 537–545. MR 31489, DOI 10.1073/pnas.35.9.537
- George W. Mackey, Induced representations of locally compact groups. I, Ann. of Math. (2) 55 (1952), 101–139. MR 44536, DOI 10.2307/1969423
- George W. Mackey, Induced representations of locally compact groups. II. The Frobenius reciprocity theorem, Ann. of Math. (2) 58 (1953), 193–221. MR 56611, DOI 10.2307/1969786
- F. I. Mautner, Induced representations, Amer. J. Math. 74 (1952), 737–758. MR 49199, DOI 10.2307/2372277
- S. Mac Lane, The influence of M. H. Stone on the origins of category theory, Functional Analysis and Related Fields: Proceedings of a Conference in Honor of Professor Marshall Stone, held at the University of Chicago, May 1968, Springer, Berlin-Heidelberg, 1970, pp. 228–241.
- Saunders MacLane, Categories for the working mathematician, Graduate Texts in Mathematics, Vol. 5, Springer-Verlag, New York-Berlin, 1971. MR 0354798
- Calvin C. Moore, On the Frobenius reciprocity theorem for locally compact groups, Pacific J. Math. 12 (1962), 359–365. MR 141737, DOI 10.2140/pjm.1962.12.359
- Paul H. Palmquist, Adjoint functors induced by adjoint linear transformations, Proc. Amer. Math Soc. 44 (1974), 251–254. MR 0346548, DOI 10.1090/S0002-9939-1974-0346548-4
- Marc A. Rieffel, Induced Banach representations of Banach algebras and locally compact groups, J. Functional Analysis 1 (1967), 443–491. MR 0223496, DOI 10.1016/0022-1236(67)90012-2
- Marc A. Rieffel, Induced representations of $C^{\ast }$-algebras, Advances in Math. 13 (1974), 176–257. MR 353003, DOI 10.1016/0001-8708(74)90068-1
- Jonathan Rosenberg, Frobenius reciprocity for square-integrable factor representations, Illinois J. Math. 21 (1977), no. 4, 818–825. MR 473092
- André Weil, L’intégration dans les groupes topologiques et ses applications, Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 869, Hermann & Cie, Paris, 1940 (French). [This book has been republished by the author at Princeton, N. J., 1941.]. MR 0005741
Additional Information
- Tyrone Crisp
- Affiliation: Max Planck Institute for Mathematics, Vivatsgasse 7, 53111 Bonn, Germany
- Address at time of publication: Department of Mathematics, Radboud University Nijmegen, P.O. Box 9010, 6500GL Nijmegen, The Netherlands
- MR Author ID: 782294
- Email: t.crisp@math.ru.nl
- Received by editor(s): October 18, 2016
- Received by editor(s) in revised form: February 3, 2017
- Published electronically: May 30, 2018
- © Copyright 2018 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 370 (2018), 6955-6972
- MSC (2010): Primary 46M15; Secondary 22D30, 46L07
- DOI: https://doi.org/10.1090/tran/7203
- MathSciNet review: 3841838