## Asymptotic stability for odd perturbations of the stationary kink in the variable-speed $\phi ^4$ model

HTML articles powered by AMS MathViewer

- by Stanley Snelson PDF
- Trans. Amer. Math. Soc.
**370**(2018), 7437-7460 Request permission

## Abstract:

We consider the $\phi ^4$ model in one space dimension with propagation speeds that are small deviations from a constant function. In the constant-speed case, a stationary solution called the kink is known explicitly, and the recent work of Kowalczyk, Martel, and Muñoz established the asymptotic stability of the kink with respect to odd perturbations in the natural energy space. We show that a stationary kink solution exists also for our class of nonconstant propagation speeds, and extend the asymptotic stability result by taking a perturbative approach to the method of Kowalczyk, Martel, and Muñoz. This requires an understanding of the spectrum of the linearization around the variable-speed kink.## References

- V. S. Buslaev and G. S. Perel′man,
*Scattering for the nonlinear Schrödinger equation: states that are close to a soliton*, Algebra i Analiz**4**(1992), no. 6, 63–102 (Russian, with Russian summary); English transl., St. Petersburg Math. J.**4**(1993), no. 6, 1111–1142. MR**1199635** - V. S. Buslaev and G. S. Perel′man,
*On the stability of solitary waves for nonlinear Schrödinger equations*, Nonlinear evolution equations, Amer. Math. Soc. Transl. Ser. 2, vol. 164, Amer. Math. Soc., Providence, RI, 1995, pp. 75–98. MR**1334139**, DOI 10.1090/trans2/164/04 - Vladimir S. Buslaev and Catherine Sulem,
*On asymptotic stability of solitary waves for nonlinear Schrödinger equations*, Ann. Inst. H. Poincaré C Anal. Non Linéaire**20**(2003), no. 3, 419–475 (English, with English and French summaries). MR**1972870**, DOI 10.1016/S0294-1449(02)00018-5 - Scipio Cuccagna,
*On asymptotic stability in 3D of kinks for the $\phi ^4$ model*, Trans. Amer. Math. Soc.**360**(2008), no. 5, 2581–2614. MR**2373326**, DOI 10.1090/S0002-9947-07-04356-5 - Scipio Cuccagna,
*The Hamiltonian structure of the nonlinear Schrödinger equation and the asymptotic stability of its ground states*, Comm. Math. Phys.**305**(2011), no. 2, 279–331. MR**2805462**, DOI 10.1007/s00220-011-1265-2 - Sara Cuenda, Niurka R. Quintero, and Angel Sánchez,
*Sine-Gordon wobbles through Bäcklund transformations*, Discrete Contin. Dyn. Syst. Ser. S**4**(2011), no. 5, 1047–1056. MR**2754104**, DOI 10.3934/dcdss.2011.4.1047 - M. Goldberg and W. Schlag,
*Dispersive estimates for Schrödinger operators in dimensions one and three*, Comm. Math. Phys.**251**(2004), no. 1, 157–178. MR**2096737**, DOI 10.1007/s00220-004-1140-5 - Daniel B. Henry, J. Fernando Perez, and Walter F. Wreszinski,
*Stability theory for solitary-wave solutions of scalar field equations*, Comm. Math. Phys.**85**(1982), no. 3, 351–361. MR**678151**, DOI 10.1007/BF01208719 - P. D. Hislop and I. M. Sigal,
*Introduction to spectral theory*, Applied Mathematical Sciences, vol. 113, Springer-Verlag, New York, 1996. With applications to Schrödinger operators. MR**1361167**, DOI 10.1007/978-1-4612-0741-2 - E. Kopylova and A. I. Komech,
*On asymptotic stability of kink for relativistic Ginzburg-Landau equations*, Arch. Ration. Mech. Anal.**202**(2011), no. 1, 213–245. MR**2835867**, DOI 10.1007/s00205-011-0415-1 - E. A. Kopylova and A. I. Komech,
*On asymptotic stability of moving kink for relativistic Ginzburg-Landau equation*, Comm. Math. Phys.**302**(2011), no. 1, 225–252. MR**2770013**, DOI 10.1007/s00220-010-1184-7 - MichałKowalczyk, Yvan Martel, and Claudio Muñoz,
*Kink dynamics in the $\phi ^4$ model: asymptotic stability for odd perturbations in the energy space*, J. Amer. Math. Soc.**30**(2017), no. 3, 769–798. MR**3630087**, DOI 10.1090/jams/870 - Nicholas Manton and Paul Sutcliffe,
*Topological solitons*, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 2004. MR**2068924**, DOI 10.1017/CBO9780511617034 - Yvan Martel and Frank Merle,
*A Liouville theorem for the critical generalized Korteweg-de Vries equation*, J. Math. Pures Appl. (9)**79**(2000), no. 4, 339–425. MR**1753061**, DOI 10.1016/S0021-7824(00)00159-8 - Yvan Martel and Frank Merle,
*Asymptotic stability of solitons for subcritical generalized KdV equations*, Arch. Ration. Mech. Anal.**157**(2001), no. 3, 219–254. MR**1826966**, DOI 10.1007/s002050100138 - Frank Merle and Pierre Raphael,
*The blow-up dynamic and upper bound on the blow-up rate for critical nonlinear Schrödinger equation*, Ann. of Math. (2)**161**(2005), no. 1, 157–222. MR**2150386**, DOI 10.4007/annals.2005.161.157 - Arnold F. Nikiforov and Vasilii B. Uvarov,
*Special functions of mathematical physics*, Birkhäuser Verlag, Basel, 1988. A unified introduction with applications; Translated from the Russian and with a preface by Ralph P. Boas; With a foreword by A. A. Samarskiĭ. MR**922041**, DOI 10.1007/978-1-4757-1595-8 - Michael E. Peskin and Daniel V. Schroeder,
*An introduction to quantum field theory*, Addison-Wesley Publishing Company, Advanced Book Program, Reading, MA, 1995. Edited and with a foreword by David Pines. MR**1402248** - R. Rajaraman,
*Solitons and instantons*, North-Holland Publishing Co., Amsterdam, 1982. An introduction to solitons and instantons in quantum field theory. MR**719693** - Michael Reed and Barry Simon,
*Methods of modern mathematical physics. IV. Analysis of operators*, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. MR**0493421** - Harvey Segur,
*Wobbling kinks in $\varphi ^{4}$ and sine-Gordon theory*, J. Math. Phys.**24**(1983), no. 6, 1439–1443. MR**708660**, DOI 10.1063/1.525867 - Harvey Segur and Martin D. Kruskal,
*Nonexistence of small-amplitude breather solutions in $\phi ^4$ theory*, Phys. Rev. Lett.**58**(1987), no. 8, 747–750. MR**879720**, DOI 10.1103/PhysRevLett.58.747 - I. M. Sigal,
*Nonlinear wave and Schrödinger equations. I. Instability of periodic and quasiperiodic solutions*, Comm. Math. Phys.**153**(1993), no. 2, 297–320. MR**1218303** - Barry Simon,
*Resonances in $n$-body quantum systems with dilatation analytic potentials and the foundations of time-dependent perturbation theory*, Ann. of Math. (2)**97**(1973), 247–274. MR**353896**, DOI 10.2307/1970847 - A. Soffer and M. I. Weinstein,
*Resonances, radiation damping and instability in Hamiltonian nonlinear wave equations*, Invent. Math.**136**(1999), no. 1, 9–74. MR**1681113**, DOI 10.1007/s002220050303 - Tanmay Vachaspati,
*Kinks and domain walls*, Cambridge University Press, New York, 2006. An introduction to classical and quantum solitons. MR**2282481**, DOI 10.1017/CBO9780511535192 - A. Vilenkin and E. P. S. Shellard,
*Cosmic strings and other topological defects*, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 1994. MR**1446491** - Ricardo Weder,
*The $W_{k,p}$-continuity of the Schrödinger wave operators on the line*, Comm. Math. Phys.**208**(1999), no. 2, 507–520. MR**1729096**, DOI 10.1007/s002200050767 - Ricardo Weder,
*$L^p$-$L^{\dot p}$ estimates for the Schrödinger equation on the line and inverse scattering for the nonlinear Schrödinger equation with a potential*, J. Funct. Anal.**170**(2000), no. 1, 37–68. MR**1736195**, DOI 10.1006/jfan.1999.3507 - Edward Witten,
*From superconductors and four-manifolds to weak interactions*, Bull. Amer. Math. Soc. (N.S.)**44**(2007), no. 3, 361–391. MR**2318156**, DOI 10.1090/S0273-0979-07-01167-6

## Additional Information

**Stanley Snelson**- Affiliation: Department of Mathematics, University of Chicago, 5734 South University Avenue, Chicago, Illinois 60637
- Address at time of publication: Department of Mathematical Sciences, Florida Institute of Technology, 150 West University Boulevard, Melbourne, Florida 32901
- MR Author ID: 966432
- Email: ssnelson@fit.edu
- Received by editor(s): April 24, 2017
- Published electronically: June 20, 2018
- Additional Notes: The author was partially supported by NSF grant DMS-1246999.
- © Copyright 2018 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**370**(2018), 7437-7460 - MSC (2010): Primary 35L71
- DOI: https://doi.org/10.1090/tran/7300
- MathSciNet review: 3841854