Universality of the nodal length of bivariate random trigonometric polynomials
HTML articles powered by AMS MathViewer
- by Jürgen Angst, Viet-Hung Pham and Guillaume Poly PDF
- Trans. Amer. Math. Soc. 370 (2018), 8331-8357 Request permission
Abstract:
We consider random trigonometric polynomials of the form \[ f_n(x,y)=\sum _{1\le k,l \le n} a_{k,l} \cos (kx) \cos (ly), \] where the entries $(a_{k,l})_{k,l\ge 1}$ are i.i.d. random variables that are centered with unit variance. We investigate the length $\ell _K(f_n)$ of the nodal set $Z_K(f_n)$ of the zeros of $f_n$ that belong to a compact set $K \subset \mathbb R^2$. We first establish a local universality result, namely we prove that, as $n$ goes to infinity, the sequence of random variables $n \ell _{K/n}(f_n)$ converges in distribution to a universal limit which does not depend on the particular law of the entries. We then show that at a macroscopic scale, the expectation of $\ell _{[0,\pi ]^2}(f_n)/n$ also converges to an universal limit. Our approach provides two main byproducts: (i) a general result regarding the continuity of the volume of the nodal sets with respect to $C^1$-convergence which refines previous findings of Rusakov and Selezniev, Iksanov, Kabluchko, and Marynuch, and Azaís, Dalmao, León, Nourdin, and Poly, and (ii) a new strategy for proving small ball estimates in random trigonometric models, providing in turn uniform local controls of the nodal volumes.References
- Robert A. Adams, Sobolev spaces, Pure and Applied Mathematics, Vol. 65, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1975. MR 0450957
- Jean-Marc Azaïs, Federico Dalmao, José León, Ivan Nourdin, and Guillaume Poly, Local universality of the number of zeros of random trigonometric polynomials with continuous coefficients, arXiv preprint arXiv:1512.05583, 2015.
- Jürgen Angst and Guillaume Poly, Universality of the mean number of real zeros of random trigonometric polynomials under a weak cramér condition, arXiv preprint arXiv:1511.08750, 2015.
- Jean-Marc Azaïs and Mario Wschebor, Level sets and extrema of random processes and fields, John Wiley & Sons, Inc., Hoboken, NJ, 2009. MR 2478201, DOI 10.1002/9780470434642
- Ward Cheney, Analysis for applied mathematics, Graduate Texts in Mathematics, vol. 208, Springer-Verlag, New York, 2001. MR 1838468, DOI 10.1007/978-1-4757-3559-8
- Omer Friedland, Ohad Giladi, and Olivier Guédon, Small ball estimates for quasi-norms, J. Theoret. Probab. 29 (2016), no. 4, 1624–1643. MR 3571257, DOI 10.1007/s10959-015-0622-z
- Hendrik Flasche, Expected number of real roots of random trigonometric polynomials, arXiv preprint arXiv:1601.01841, 2016.
- Yan V. Fyodorov, Antonio Lerario, and Erik Lundberg, On the number of connected components of random algebraic hypersurfaces, J. Geom. Phys. 95 (2015), 1–20. MR 3357820, DOI 10.1016/j.geomphys.2015.04.006
- Damien Gayet and Jean-Yves Welschinger, Betti numbers of random real hypersurfaces and determinants of random symmetric matrices, J. Eur. Math. Soc. (JEMS) 18 (2016), no. 4, 733–772. MR 3474455, DOI 10.4171/JEMS/601
- Alexander Iksanov, Zakhar Kabluchko, and Alexander Marynych, Local universality for real roots of random trigonometric polynomials, Electron. J. Probab. 21 (2016), Paper No. 63, 19. MR 3563891, DOI 10.1214/16-EJP9
- Il’dar A. Ibragimov and Nina B. Maslova. On the expected number of real zeros of random polynomials i. coefficients with zero means, Theory of Probability & Its Applications, 16(2):228–248, 1971.
- Thomas Letendre, Expected volume and Euler characteristic of random submanifolds, J. Funct. Anal. 270 (2016), no. 8, 3047–3110. MR 3470435, DOI 10.1016/j.jfa.2016.01.007
- Thomas Letendre, Variance of the volume of random real algebraic submanifolds, arXiv preprint arXiv:1608.05658, 2016.
- L. A. Lusternik and V. J. Sobolev, Elements of functional analysis, Revised corrected edition, International Monographs on Advanced Mathematics and Physics, Hindustan Publishing Corp., Delhi, 1971. Translated from the Russian. MR 0342977
- Domenico Marinucci, Giovanni Peccati, Maurizia Rossi, and Igor Wigman, Non-universality of nodal length distribution for arithmetic random waves, Geom. Funct. Anal. 26 (2016), no. 3, 926–960. MR 3540457, DOI 10.1007/s00039-016-0376-5
- Fedor Nazarov and Mikhail Sodin, Random complex zeroes and random nodal lines, Proceedings of the International Congress of Mathematicians. Volume III, Hindustan Book Agency, New Delhi, 2010, pp. 1450–1484. MR 2827851
- Ferenc Oravecz, Zeév Rudnick, and Igor Wigman, The Leray measure of nodal sets for random eigenfunctions on the torus, Ann. Inst. Fourier (Grenoble) 58 (2008), no. 1, 299–335 (English, with English and French summaries). MR 2401223
- Alexander Rusakov and Oleg Seleznjev, On weak convergence of functionals on smooth random functions, Math. Commun. 6 (2001), no. 2, 123–134. MR 1908331
- Zeév Rudnick and Igor Wigman, On the volume of nodal sets for eigenfunctions of the Laplacian on the torus, Ann. Henri Poincaré 9 (2008), no. 1, 109–130. MR 2389892, DOI 10.1007/s00023-007-0352-6
- Bernard Shiffman and Steve Zelditch, Distribution of zeros of random and quantum chaotic sections of positive line bundles, Comm. Math. Phys. 200 (1999), no. 3, 661–683. MR 1675133, DOI 10.1007/s002200050544
- Terence Tao and Van Vu, Local universality of zeroes of random polynomials, Int. Math. Res. Not. IMRN 13 (2015), 5053–5139. MR 3439098, DOI 10.1093/imrn/rnu084
- Igor Wigman, Fluctuations of the nodal length of random spherical harmonics, Comm. Math. Phys. 298 (2010), no. 3, 787–831. MR 2670928, DOI 10.1007/s00220-010-1078-8
- J. Ernest Wilkins Jr., Mean number of real zeros of a random trigonometric polynomial, Proc. Amer. Math. Soc. 111 (1991), no. 3, 851–863. MR 1039266, DOI 10.1090/S0002-9939-1991-1039266-0
Additional Information
- Jürgen Angst
- Affiliation: IRMAR, University of Rennes 1, Rennes, France
- Email: jurgen.angst@univ-rennes1.fr
- Viet-Hung Pham
- Affiliation: Vietnamese Institute for Advanced Study in Mathematics, Ha Noi, Viet Nam
- MR Author ID: 1027015
- Email: pgviethung@gmail.com
- Guillaume Poly
- Affiliation: IRMAR, University of Rennes 1, Rennes, France
- MR Author ID: 997488
- Email: guillaume.poly@univ-rennes1.fr
- Received by editor(s): October 28, 2016
- Received by editor(s) in revised form: January 30, 2017, and March 10, 2017
- Published electronically: July 12, 2018
- © Copyright 2018 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 370 (2018), 8331-8357
- MSC (2010): Primary 26C10; Secondary 30C15, 42A05, 60F17, 60G55
- DOI: https://doi.org/10.1090/tran/7255
- MathSciNet review: 3864378