Densities of primes and realization of local extensions
HTML articles powered by AMS MathViewer
- by A. B. Ivanov PDF
- Trans. Amer. Math. Soc. 371 (2019), 83-103 Request permission
Abstract:
In this paper we introduce new densities on the set of primes of a number field. If $K/K_0$ is a Galois extension of number fields, we associate to any element $x \in \mathrm {G}_{K/K_0}$ a density $\delta _{K/K_0,x}$ on the primes of $K$. In particular, the density associated to $x = 1$ is the usual Dirichlet density on $K$. We also give two applications of these densities (for $x \neq 1$): the first is a realization result à la the Grunwald-Wang theorem such that essentially, ramification is only allowed in a set of arbitrarily small (positive) Dirichlet density. The second concerns the so-called saturated sets of primes, introduced by Wingberg.References
- G. Chenevier and L. Clozel, Corps de nombres peu ramifiés et formes automorphes autoduales, J. Amer. Math. Soc. 22 (2009), no. 2, 467–519 (French). MR 2476781, DOI 10.1090/S0894-0347-08-00617-6
- Gaëtan Chenevier, On number fields with given ramification, Compos. Math. 143 (2007), no. 6, 1359–1373. MR 2371372, DOI 10.1112/S0010437X07003132
- A. Holschbach, A Chebotarev-type density theorem for divisors on algebraic varieties, preprint, arXiv:1006.2340, 2010.
- Alexander Ivanov, Stable sets of primes in number fields, Algebra Number Theory 10 (2016), no. 1, 1–36. MR 3463034, DOI 10.2140/ant.2016.10.1
- Jürgen Neukirch, Alexander Schmidt, and Kay Wingberg, Cohomology of number fields, 2nd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 323, Springer-Verlag, Berlin, 2008. MR 2392026, DOI 10.1007/978-3-540-37889-1
- Alexander Schmidt, Über pro-$p$-fundamentalgruppen markierter arithmetischer kurven, J. Reine Angew. Math. 640 (2010), 203–235 (German, with English summary). MR 2629694, DOI 10.1515/CRELLE.2010.025
- Kay Wingberg, On Čebotarev sets, Math. Res. Lett. 13 (2006), no. 2-3, 179–197. MR 2231111, DOI 10.4310/MRL.2006.v13.n2.a2
- K. Wingberg, Sets of completely decomposed primes in extensions of number fields, preprint, Heidelberg, 2013.
Additional Information
- A. B. Ivanov
- Affiliation: Institut de Mathématiques de Jussieu, 4, place Jussieu, 75252 Paris cedex 05, France
- Address at time of publication: Endenicher Allee 60, 53115 Bonn, Germany
- MR Author ID: 1014138
- Email: ivanov@ma.tum.de, ivanov@math.uni-bonn.de
- Received by editor(s): October 20, 2016
- Received by editor(s) in revised form: January 12, 2017
- Published electronically: April 25, 2018
- Additional Notes: The author was supported by the Technical University Munich and by the HIM center in Bonn
- © Copyright 2018 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 371 (2019), 83-103
- MSC (2010): Primary 11R34, 11R44, 11R45
- DOI: https://doi.org/10.1090/tran/7449
- MathSciNet review: 3885138