Non-optimal levels of a reducible mod $\ell$ modular representation
HTML articles powered by AMS MathViewer
- by Hwajong Yoo PDF
- Trans. Amer. Math. Soc. 371 (2019), 3805-3830 Request permission
Abstract:
Let $\ell \geq 5$ be a prime and let $N$ be a square-free integer prime to $\ell$. For each prime $p$ dividing $N$, let $a_p$ be either $1$ or $-1$. We give sufficient criteria for the existence of a newform $f$ of weight 2 for $\Gamma _0(N)$ such that the mod $\ell$ Galois representation attached to $f$ is reducible and $U_p f = a_p f$ for primes $p$ dividing $N$. The main techniques used are level raising methods based on an exact sequence due to Ribet.References
- Amod Agashe, Kenneth A. Ribet, and William A. Stein, The modular degree, congruence primes, and multiplicity one, Number theory, analysis and geometry, Springer, New York, 2012, pp. 19–49. MR 2867910, DOI 10.1007/978-1-4614-1260-1_{2}
- Nicolas Billerey and Luis V. Dieulefait, Explicit large image theorems for modular forms, J. Lond. Math. Soc. (2) 89 (2014), no. 2, 499–523. MR 3188630, DOI 10.1112/jlms/jdt072
- Nicolas Billerey and Ricardo Menares, On the modularity of reducible $\textrm {mod}\, l$ Galois representations, Math. Res. Lett. 23 (2016), no. 1, 15–41. MR 3512875, DOI 10.4310/MRL.2016.v23.n1.a2
- Nicolas Billerey and Ricardo Menares, Strong modularity of reducible Galois representations, Trans. Amer. Math. Soc. 370 (2018), no. 2, 967–986. MR 3729493, DOI 10.1090/tran/6979
- Kevin Buzzard, Integral models of certain Shimura curves, Duke Math. J. 87 (1997), no. 3, 591–612. MR 1446619, DOI 10.1215/S0012-7094-97-08719-6
- F. Calegari and A. Venkatesh, A torsion Jacquet-Langlands correspondence, preprint, available at https://arxiv.org/abs/1604.01173 (2012).
- I. V. Čerednik, Uniformization of algebraic curves by discrete arithmetic subgroups of $\textrm {PGL}_{2}(k_{w})$ with compact quotient spaces, Mat. Sb. (N.S.) 100(142) (1976), no. 1, 59–88, 165 (Russian). MR 0491706
- P. Deligne and M. Rapoport, Les schémas de modules de courbes elliptiques, Modular functions of one variable, II (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972) Lecture Notes in Math., Vol. 349, Springer, Berlin, 1973, pp. 143–316 (French). MR 0337993
- Fred Diamond and Richard Taylor, Nonoptimal levels of mod $l$ modular representations, Invent. Math. 115 (1994), no. 3, 435–462. MR 1262939, DOI 10.1007/BF01231768
- V. G. Drinfel′d, Coverings of $p$-adic symmetric domains, Funkcional. Anal. i Priložen. 10 (1976), no. 2, 29–40 (Russian). MR 0422290
- A. Grothendieck, SGA 7 I. Expose IX, Lecture Notes in Math., Vol. 288, 1972, pp. 313–523.
- David Helm, On maps between modular Jacobians and Jacobians of Shimura curves, Israel J. Math. 160 (2007), 61–117. MR 2342491, DOI 10.1007/s11856-007-0056-0
- Jun-ichi Igusa, Kroneckerian model of fields of elliptic modular functions, Amer. J. Math. 81 (1959), 561–577. MR 108498, DOI 10.2307/2372914
- Nicholas M. Katz and Barry Mazur, Arithmetic moduli of elliptic curves, Annals of Mathematics Studies, vol. 108, Princeton University Press, Princeton, NJ, 1985. MR 772569, DOI 10.1515/9781400881710
- B. Mazur, Modular curves and the Eisenstein ideal, Inst. Hautes Études Sci. Publ. Math. 47 (1977), 33–186 (1978). With an appendix by Mazur and M. Rapoport. MR 488287
- G. Prasad and A. Rapinchuk, Developments on the congruence subgroup problem after the work of Bass, Milnor and Serre, John Milnor’s collected works Vol. V, AMS (2010), 307–325.
- M. Raynaud, Spécialisation du foncteur de Picard, Inst. Hautes Études Sci. Publ. Math. 38 (1970), 27–76 (French). MR 282993
- Kenneth A. Ribet, Galois action on division points of Abelian varieties with real multiplications, Amer. J. Math. 98 (1976), no. 3, 751–804. MR 457455, DOI 10.2307/2373815
- Kenneth A. Ribet, Congruence relations between modular forms, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Warsaw, 1983) PWN, Warsaw, 1984, pp. 503–514. MR 804706
- K. A. Ribet, On modular representations of $\textrm {Gal}(\overline \textbf {Q}/\textbf {Q})$ arising from modular forms, Invent. Math. 100 (1990), no. 2, 431–476. MR 1047143, DOI 10.1007/BF01231195
- Kenneth A. Ribet, Torsion points on $J_0(N)$ and Galois representations, Arithmetic theory of elliptic curves (Cetraro, 1997) Lecture Notes in Math., vol. 1716, Springer, Berlin, 1999, pp. 145–166. MR 1754687, DOI 10.1007/BFb0093454
- K. Ribet, Non-optimal levels of mod $\ell$ reducible Galois representations, CRM Lecture notes available at http://math.berkeley.edu/~ribet/crm.pdf (2010).
- Jean-Pierre Serre, Sur les représentations modulaires de degré $2$ de $\textrm {Gal}(\overline \textbf {Q}/\textbf {Q})$, Duke Math. J. 54 (1987), no. 1, 179–230 (French). MR 885783, DOI 10.1215/S0012-7094-87-05413-5
- Alexei Skorobogatov, Shimura coverings of Shimura curves and the Manin obstruction, Math. Res. Lett. 12 (2005), no. 5-6, 779–788. MR 2189238, DOI 10.4310/MRL.2005.v12.n5.a14
- W. Stein, The modular forms database: Tables, available at http://wstein.org/Tables/an.html.
- Marie-France Vignéras, Arithmétique des algèbres de quaternions, Lecture Notes in Mathematics, vol. 800, Springer, Berlin, 1980 (French). MR 580949
- Hwajong Yoo, Modularity of residually reducible Galois representations and Eisenstein ideals, ProQuest LLC, Ann Arbor, MI, 2013. Thesis (Ph.D.)–University of California, Berkeley. MR 3192814
- Hwajong Yoo, The index of an Eisenstein ideal and multiplicity one, Math. Z. 282 (2016), no. 3-4, 1097–1116. MR 3473658, DOI 10.1007/s00209-015-1579-4
- Hwajong Yoo, On Eisenstein ideals and the cuspidal group of $J_0(N)$, Israel J. Math. 214 (2016), no. 1, 359–377. MR 3540618, DOI 10.1007/s11856-016-1333-6
Additional Information
- Hwajong Yoo
- Affiliation: Center for Geometry and Physics, Institute for Basic Science (IBS), Pohang, Republic of Korea 37673
- Address at time of publication: College of Liberal Studies, Seoul National University 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
- MR Author ID: 1146780
- Email: hwajong@gmail.com
- Received by editor(s): May 26, 2016
- Received by editor(s) in revised form: June 15, 2017, and June 21, 2017
- Published electronically: November 16, 2018
- Additional Notes: This work was supported by IBS-R003-D1.
- © Copyright 2018 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 371 (2019), 3805-3830
- MSC (2010): Primary 11F33, 11F80; Secondary 11G18
- DOI: https://doi.org/10.1090/tran/7314
- MathSciNet review: 3917209