Singular measure traveling waves in an epidemiological model with continuous phenotypes
HTML articles powered by AMS MathViewer
- by Quentin Griette PDF
- Trans. Amer. Math. Soc. 371 (2019), 4411-4458 Request permission
Abstract:
We consider the reaction-diffusion equation \begin{equation*} u_t=u_{xx}+\mu \left (\int _\Omega M(y,z)u(t,x,z)dz-u\right ) + u\left (a(y)-\int _\Omega K(y,z) u(t,x,z)dz\right ) , \end{equation*} where $u=u(t,x,y)$ stands for the density of a theoretical population with a spatial ($x\in \mathbb R$) and phenotypic ($y\in \Omega \subset \mathbb {R}^n$) structure, $M(y,z)$ is a mutation kernel acting on the phenotypic space, $a(y)$ is a fitness function, and $K(y,z)$ is a competition kernel. Using a vanishing viscosity method, we construct measure-valued traveling waves for this equation and present particular cases where singular traveling waves do exist. We determine that the speed of the constructed traveling waves is the expected spreading speed $c^*:=2\sqrt {-\lambda _1}$, where $\lambda _1$ is the principal eigenvalue of the linearized equation. As far as we know, this is the first construction of a measure-valued traveling wave for a reaction-diffusion equation.References
- L. Addario-Berry, J. Berestycki, and S. Penington, Branching Brownian motion with decay of mass and the nonlocal Fisher-KPP equation, arXiv:1712.08098 (2017).
- Matthieu Alfaro, Henri Berestycki, and Gaël Raoul, The effect of climate shift on a species submitted to dispersion, evolution, growth, and nonlocal competition, SIAM J. Math. Anal. 49 (2017), no. 1, 562–596. MR 3612179, DOI 10.1137/16M1075934
- Matthieu Alfaro and Rémi Carles, Replicator-mutator equations with quadratic fitness, Proc. Amer. Math. Soc. 145 (2017), no. 12, 5315–5327. MR 3717959, DOI 10.1090/proc/13669
- Matthieu Alfaro, Jérôme Coville, and Gaël Raoul, Travelling waves in a nonlocal reaction-diffusion equation as a model for a population structured by a space variable and a phenotypic trait, Comm. Partial Differential Equations 38 (2013), no. 12, 2126–2154. MR 3169773, DOI 10.1080/03605302.2013.828069
- Matthieu Alfaro and Quentin Griette, Pulsating fronts for Fisher-KPP systems with mutations as models in evolutionary epidemiology, Nonlinear Anal. Real World Appl. 42 (2018), 255–289. MR 3773360, DOI 10.1016/j.nonrwa.2018.01.004
- Henri Berestycki and François Hamel, Front propagation in periodic excitable media, Comm. Pure Appl. Math. 55 (2002), no. 8, 949–1032. MR 1900178, DOI 10.1002/cpa.3022
- Henri Berestycki, Tianling Jin, and Luis Silvestre, Propagation in a non local reaction diffusion equation with spatial and genetic trait structure, Nonlinearity 29 (2016), no. 4, 1434–1466. MR 3476514, DOI 10.1088/0951-7715/29/4/1434
- Henri Berestycki, Grégoire Nadin, Benoit Perthame, and Lenya Ryzhik, The non-local Fisher-KPP equation: travelling waves and steady states, Nonlinearity 22 (2009), no. 12, 2813–2844. MR 2557449, DOI 10.1088/0951-7715/22/12/002
- Henri Berestycki, Basil Nicolaenko, and Bruno Scheurer, Traveling wave solutions to combustion models and their singular limits, SIAM J. Math. Anal. 16 (1985), no. 6, 1207–1242. MR 807905, DOI 10.1137/0516088
- H. Berestycki and L. Nirenberg, On the method of moving planes and the sliding method, Bol. Soc. Brasil. Mat. (N.S.) 22 (1991), no. 1, 1–37. MR 1159383, DOI 10.1007/BF01244896
- V. I. Bogachev, Measure theory. Vol. I, II, Springer-Verlag, Berlin, 2007. MR 2267655, DOI 10.1007/978-3-540-34514-5
- Olivier Bonnefon, Jérôme Coville, and Guillaume Legendre, Concentration phenomenon in some non-local equation, Discrete Contin. Dyn. Syst. Ser. B 22 (2017), no. 3, 763–781. MR 3639140, DOI 10.3934/dcdsb.2017037
- E. Bouin, C. Henderson and L. Ryzhik. The Bramson delay in the non-local Fisher-KPP equation, arXiv:1710.03628 (2017).
- Emeric Bouin and Vincent Calvez, Travelling waves for the cane toads equation with bounded traits, Nonlinearity 27 (2014), no. 9, 2233–2253. MR 3266851, DOI 10.1088/0951-7715/27/9/2233
- Emeric Bouin, Vincent Calvez, Nicolas Meunier, Sepideh Mirrahimi, Benoît Perthame, Gaël Raoul, and Raphaël Voituriez, Invasion fronts with variable motility: phenotype selection, spatial sorting and wave acceleration, C. R. Math. Acad. Sci. Paris 350 (2012), no. 15-16, 761–766 (English, with English and French summaries). MR 2981349, DOI 10.1016/j.crma.2012.09.010
- E. Bouin, M. H. Chan, C. Henderson, and P. S. Kim, Influence of a mortality trade-off on the spreading rate of cane toads fronts, arXiv:1702.00179 (2017).
- Emeric Bouin, Christopher Henderson, and Lenya Ryzhik, The Bramson logarithmic delay in the cane toads equations, Quart. Appl. Math. 75 (2017), no. 4, 599–634. MR 3686514, DOI 10.1090/qam/1470
- Haim Brezis, Functional analysis, Sobolev spaces and partial differential equations, Universitext, Springer, New York, 2011. MR 2759829
- Jérôme Coville, On a simple criterion for the existence of a principal eigenfunction of some nonlocal operators, J. Differential Equations 249 (2010), no. 11, 2921–2953. MR 2718672, DOI 10.1016/j.jde.2010.07.003
- Jérôme Coville, Juan Dávila, and Salomé Martínez, Pulsating fronts for nonlocal dispersion and KPP nonlinearity, Ann. Inst. H. Poincaré C Anal. Non Linéaire 30 (2013), no. 2, 179–223. MR 3035974, DOI 10.1016/j.anihpc.2012.07.005
- J. Coville, Singular measure as principal eigenfunction of some nonlocal operators, Applied Mathematics Letters 26 (2013), no. 8, 831–835.
- Grégory Faye and Matt Holzer, Modulated traveling fronts for a nonlocal Fisher-KPP equation: a dynamical systems approach, J. Differential Equations 258 (2015), no. 7, 2257–2289. MR 3306338, DOI 10.1016/j.jde.2014.12.006
- R. A. Fisher. The wave of advance of advantageous genes, Annals of Eugenics 7 (1937), no. 4, 355–369.
- Robert L. Foote, Regularity of the distance function, Proc. Amer. Math. Soc. 92 (1984), no. 1, 153–155. MR 749908, DOI 10.1090/S0002-9939-1984-0749908-9
- Robert A. Gardner, Existence and stability of travelling wave solutions of competition models: a degree theoretic approach, J. Differential Equations 44 (1982), no. 3, 343–364. MR 661157, DOI 10.1016/0022-0396(82)90001-8
- Jimmy Garnier, Thomas Giletti, François Hamel, and Lionel Roques, Inside dynamics of pulled and pushed fronts, J. Math. Pures Appl. (9) 98 (2012), no. 4, 428–449 (English, with English and French summaries). MR 2968163, DOI 10.1016/j.matpur.2012.02.005
- S. Genieys, V. Volpert, and P. Auger, Pattern and waves for a model in population dynamics with nonlocal consumption of resources, Math. Model. Nat. Phenom. 1 (2006), no. 1, 65–82. MR 2318467, DOI 10.1051/mmnp:2006004
- Marie-Ève Gil, Francois Hamel, Guillaume Martin, and Lionel Roques. Mathematical properties of a class of integro-differential models from population genetics. SIAM J. Appl. Math., 77(4):1536–1561, 2017.
- David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, Classics in Mathematics, Springer-Verlag, Berlin, 2001. Reprint of the 1998 edition. MR 1814364
- Léo Girardin, Non-cooperative Fisher-KPP systems: traveling waves and long-time behavior, Nonlinearity 31 (2018), no. 1, 108–164. MR 3746634, DOI 10.1088/1361-6544/aa8ca7
- S. A. Gourley, Travelling front solutions of a nonlocal Fisher equation, J. Math. Biol. 41 (2000), no. 3, 272–284. MR 1792677, DOI 10.1007/s002850000047
- Quentin Griette and Gaël Raoul, Existence and qualitative properties of travelling waves for an epidemiological model with mutations, J. Differential Equations 260 (2016), no. 10, 7115–7151. MR 3473439, DOI 10.1016/j.jde.2016.01.022
- Q. Griette, G. Raoul, and S. Gandon, Virulence evolution at the front line of spreading epidemics, Evolution 69 (2015), no. 11, 2810–2819.
- François Hamel and Lenya Ryzhik, On the nonlocal Fisher-KPP equation: steady states, spreading speed and global bounds, Nonlinearity 27 (2014), no. 11, 2735–2753. MR 3274582, DOI 10.1088/0951-7715/27/11/2735
- Karel Hasik, Jana Kopfová, Petra Nábělková, and Sergei Trofimchuk, Traveling waves in the nonlocal KPP-Fisher equation: different roles of the right and the left interactions, J. Differential Equations 260 (2016), no. 7, 6130–6175. MR 3456829, DOI 10.1016/j.jde.2015.12.035
- E. Holmes, The evolution and emergence of RNA viruses, Oxford University Press, 2009.
- A. N. Kolmogorov, I. G. Petrovsky, and N. S. Piskunov, Étude de l’équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique, Bull. Univ. Etat Moscou, Sér. Inter. A 1 (1937), 1–26.
- Guo Lin, Spreading speeds of a Lotka-Volterra predator-prey system: the role of the predator, Nonlinear Anal. 74 (2011), no. 7, 2448–2461. MR 2776497, DOI 10.1016/j.na.2010.11.046
- Roger Lui, Biological growth and spread modeled by systems of recursions. I. Mathematical theory, Math. Biosci. 93 (1989), no. 2, 269–295. MR 984281, DOI 10.1016/0025-5564(89)90026-6
- Toshiko Ogiwara and Hiroshi Matano, Monotonicity and convergence results in order-preserving systems in the presence of symmetry, Discrete Contin. Dynam. Systems 5 (1999), no. 1, 1–34. MR 1664441, DOI 10.3934/dcds.1999.5.1
- S. Penington, The spreading speed of solutions of the non-local Fisher-KPP equation, arXiv:1708.07965 (2017).
- T. A. Perkins, B. L. Phillips, M. L. Baskett, and A. Hastings, Evolution of dispersal and life history interact to drive accelerating spread of an invasive species, Ecology Letters 16 (2013), no. 8, 1079–1087.
- B. L. Phillips and R. Puschendorf, Do pathogens become more virulent as they spread? Evidence from the amphibian declines in Central America, Proceedings of the Royal Society of London B: Biological Sciences, 280 (2013), 1766.
- Walter Rudin, Real and complex analysis, 2nd ed., McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1974. MR 0344043
- A. N. Stokes, On two types of moving front in quasilinear diffusion, Math. Biosci. 31 (1976), no. 3-4, 307–315. MR 682241, DOI 10.1016/0025-5564(76)90087-0
- D. Waxman and J. R. Peck, Pleiotropy and the preservation of perfection. Science 279 (1998), no. 5354, 1210–1213.
- D. Waxman and J. R. Peck, The frequency of the perfect genotype in a population subject to pleiotropic mutation, Theoretical Population Biology 69 (2006), no. 4, 409–418.
- H. F. Weinberger, Long-time behavior of a class of biological models, SIAM J. Math. Anal. 13 (1982), no. 3, 353–396. MR 653463, DOI 10.1137/0513028
- Hans F. Weinberger, On spreading speeds and traveling waves for growth and migration models in a periodic habitat, J. Math. Biol. 45 (2002), no. 6, 511–548. MR 1943224, DOI 10.1007/s00285-002-0169-3
- Hans F. Weinberger, Mark A. Lewis, and Bingtuan Li, Analysis of linear determinacy for spread in cooperative models, J. Math. Biol. 45 (2002), no. 3, 183–218. MR 1930974, DOI 10.1007/s002850200145
- Jack Xin, Front propagation in heterogeneous media, SIAM Rev. 42 (2000), no. 2, 161–230. MR 1778352, DOI 10.1137/S0036144599364296
- Eberhard Zeidler, Nonlinear functional analysis and its applications. I, Springer-Verlag, New York, 1986. Fixed-point theorems; Translated from the German by Peter R. Wadsack. MR 816732, DOI 10.1007/978-1-4612-4838-5
Additional Information
- Quentin Griette
- Affiliation: IMAG, Université de Montpellier, 163 rue Auguste Broussonnet, 34090 Montpellier, France
- Address at time of publication: IMB, Université de Bordeaux, 351 cours de la Libération, 33800 Talence, France
- MR Author ID: 1152578
- Email: quentin.griette@math.u-bordeaux.fr
- Received by editor(s): October 5, 2017
- Received by editor(s) in revised form: June 1, 2018, and June 27, 2018
- Published electronically: November 13, 2018
- © Copyright 2018 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 371 (2019), 4411-4458
- MSC (2010): Primary 35R09; Secondary 35C07, 35D30, 35Q92, 92D30, 92D15
- DOI: https://doi.org/10.1090/tran/7700
- MathSciNet review: 3917227