On the structure of the Wadge degrees of bqo-valued Borel functions
HTML articles powered by AMS MathViewer
- by Takayuki Kihara and Antonio Montalbán PDF
- Trans. Amer. Math. Soc. 371 (2019), 7885-7923 Request permission
Abstract:
In this article, we give a full description of the Wadge degrees of Borel functions from $\omega ^\omega$ to a better-quasi-ordering $\mathcal {Q}$. More precisely, for any countable ordinal $\xi$, we show that the Wadge degrees of $\mathbf {\Delta }^0_{1+\xi }$-measurable functions $\omega ^\omega \to \mathcal {Q}$ can be represented by countable joins of the $\xi$th transfinite nests of $\mathcal {Q}$-labeled well-founded trees.References
- Alexander C. Block, Operations on a Wadge-type hierarchy of ordinal-valued functions, Master’s thesis, Universiteit van Amsterdam, 2014.
- Adam Day, Rod Downey, and Linda B. Westrick, Reducibilities for discontinuous functions, unpublished, 2017.
- J. Duparc, Wadge hierarchy and Veblen hierarchy, part II: Borel sets of infinite rank, unpublished.
- J. Duparc, Wadge hierarchy and Veblen hierarchy. I. Borel sets of finite rank, J. Symbolic Logic 66 (2001), no. 1, 56–86. MR 1825174, DOI 10.2307/2694911
- J. Duparc, The Steel hierarchy of ordinal valued Borel mappings, J. Symbolic Logic 68 (2003), no. 1, 187–234. MR 1959317, DOI 10.2178/jsl/1045861511
- Richard Friedberg, A criterion for completeness of degrees of unsolvability, J. Symbolic Logic 22 (1957), 159–160. MR 98025, DOI 10.2307/2964177
- P. Hertling, Unstetigkeitsgrade von Funktionen in der effectiven Analysis, Ph. D. thesis, FernUniversität Hagen, Informatik-Berichte 208 (1996).
- Takayuki Kihara, Ordinal ranks on the Baire and non-Baire class functions, unpublished, 2017.
- Alexander S. Kechris, Benedikt Löwe, and John R. Steel (eds.), Wadge degrees and projective ordinals. The Cabal Seminar. Volume II, Lecture Notes in Logic, vol. 37, Association for Symbolic Logic, La Jolla, CA; Cambridge University Press, Cambridge, 2012. MR 2906066
- Takayuki Kihara and Antonio Montalbán, The uniform Martin’s conjecture for many-one degrees, to appear in Trans. Amer. Math. Soc.
- Richard Laver, Better-quasi-orderings and a class of trees, Studies in foundations and combinatorics, Adv. in Math. Suppl. Stud., vol. 1, Academic Press, New York-London, 1978, pp. 31–48. MR 520553
- Alain Louveau and Jean Saint-Raymond, On the quasi-ordering of Borel linear orders under embeddability, J. Symbolic Logic 55 (1990), no. 2, 537–560. MR 1056369, DOI 10.2307/2274645
- John M. Macintyre, Transfinite extensions of Friedberg’s completeness criterion, J. Symbolic Logic 42 (1977), no. 1, 1–10. MR 491099, DOI 10.2307/2272313
- Alberto Marcone and Antonio Montalbán, The Veblen functions for computability theorists, J. Symbolic Logic 76 (2011), no. 2, 575–602. MR 2830417, DOI 10.2178/jsl/1305810765
- Antonio Montalbán, Priority arguments via true stages, J. Symb. Log. 79 (2014), no. 4, 1315–1335. MR 3343540, DOI 10.1017/jsl.2014.11
- Richard and Weitkamp Mansfield Galen, Recursive aspects of descriptive set theory, with with a chapter by Stephen Simpson, Oxford University Press, New York, 1985.
- C. St. J. A. Nash-Williams, On well-quasi-ordering infinite trees, Proc. Cambridge Philos. Soc. 61 (1965), 697–720. MR 175814, DOI 10.1017/s0305004100039062
- V. L. Selivanov, Hierarchies of hyperarithmetic sets and functions, Algebra i Logika 22 (1983), no. 6, 666–692, 720 (Russian). MR 781399
- V. L. Selivanov, Fine hierarchies and Boolean terms, J. Symbolic Logic 60 (1995), no. 1, 289–317. MR 1324514, DOI 10.2307/2275522
- Victor L. Selivanov, Hierarchies of $\Delta ^0_2$-measurable $k$-partitions, MLQ Math. Log. Q. 53 (2007), no. 4-5, 446–461. MR 2351943, DOI 10.1002/malq.200710011
- Victor Selivanov, A fine hierarchy of $\omega$-regular $k$-partitions, Models of computation in context, Lecture Notes in Comput. Sci., vol. 6735, Springer, Heidelberg, 2011, pp. 260–269. MR 2843646, DOI 10.1007/978-3-642-21875-0_{2}8
- Victor Selivanov, Towards a descriptive theory of $\rm cb_0$-spaces, Math. Structures Comput. Sci. 27 (2017), no. 8, 1553–1580. MR 3724463, DOI 10.1017/S0960129516000177
- Victor L. Selivanov, Extending Wadge theory to $k$-partitions, Unveiling dynamics and complexity, Lecture Notes in Comput. Sci., vol. 10307, Springer, Cham, 2017, pp. 387–399. MR 3678767, DOI 10.1007/978-3-319-58741-7_{3}6
- Stephen G. Simpson. Bqo-theory and Fraïssé’s conjecture. Chapter 9 of \cite{Mansfield-Weitkamp}, 1985.
- Fons van Engelen, Arnold W. Miller, and John Steel, Rigid Borel sets and better quasi-order theory, Logic and combinatorics (Arcata, Calif., 1985) Contemp. Math., vol. 65, Amer. Math. Soc., Providence, RI, 1987, pp. 199–222. MR 891249, DOI 10.1090/conm/065/891249
- Robert Van Wesep, Wadge degrees and descriptive set theory, Cabal Seminar 76–77 (Proc. Caltech-UCLA Logic Sem., 1976–77) Lecture Notes in Math., vol. 689, Springer, Berlin, 1978, pp. 151–170. MR 526917
- William Wilfred Wadge, Reducibility and determinateness on the Baire space, ProQuest LLC, Ann Arbor, MI, 1983. Thesis (Ph.D.)–University of California, Berkeley. MR 2633374
Additional Information
- Takayuki Kihara
- Affiliation: Graduate School of Informatics, Nagoya University, Nagoya, 464-8601, Japan
- MR Author ID: 892476
- Email: kihara@i.nagoya-u.ac.jp
- Antonio Montalbán
- Affiliation: Department of Mathematics, University of California, Berkeley, California 94720
- Email: antonio@math.berkeley.edu
- Received by editor(s): May 21, 2017
- Received by editor(s) in revised form: April 15, 2018
- Published electronically: February 14, 2019
- Additional Notes: The first-named author was partially supported by JSPS KAKENHI grant 17H06738, 15H03634, and the JSPS Core-to-Core Program (A. Advanced Research Networks).
The second-named author was partially supported by NSF grant DMS-0901169 and the Packard Fellowship. - © Copyright 2019 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 371 (2019), 7885-7923
- MSC (2010): Primary 03E15; Secondary 03D55, 03D80
- DOI: https://doi.org/10.1090/tran/7621
- MathSciNet review: 3955538