## Corrigendum to “Paramodular abelian varieties of odd conductor"

HTML articles powered by AMS MathViewer

- by Armand Brumer and Kenneth Kramer PDF
- Trans. Amer. Math. Soc.
**372**(2019), 2251-2254 Request permission

## Abstract:

Frank Calegari was kind enough to point out a phenomenon overlooked in the paramodular conjecture in our paper. We propose a modification and prove that the phenomenon occurs infrequently.## References

- Tobias Berger, Lassina Dembélé, Ariel Pacetti, and Mehmet Haluk Şengün,
*Theta lifts of Bianchi modular forms and applications to paramodularity*, J. Lond. Math. Soc. (2)**92**(2015), no. 2, 353–370. MR**3404028**, DOI 10.1112/jlms/jdv023 - G. Boxer, F. Calegari, T. Gee, and V. Pilloni,
*Abelian surfaces over totally real fields are potentially modular*, 2018, www.math.uchicago.edu/~fcale/papers/surfaces.pdf. - Armand Brumer and Kenneth Kramer,
*Paramodular abelian varieties of odd conductor*, Trans. Amer. Math. Soc.**366**(2014), no. 5, 2463–2516. MR**3165645**, DOI 10.1090/S0002-9947-2013-05909-0 - See https://galoisrepresentations.wordpress.com/2018/01/15/the-paramodular-conject ure-is-false-for-trivial-reasons/.
- Wên Chên Chi,
*On the $l$-adic representations attached to some absolutely simple abelian varieties of type $\textrm {II}$*, J. Fac. Sci. Univ. Tokyo Sect. IA Math.**37**(1990), no. 2, 467–484. MR**1071431** - A. Grothendieck,
*Modèles de Néron et monodromie*, Sém. de Géom. 7, Exposé IX, Lecture Notes in Mathematics, vol. 288, Springer-Verlag, New York, 1973. - J. S. Milne,
*On the arithmetic of abelian varieties*, Invent. Math.**17**(1972), 177–190. MR**330174**, DOI 10.1007/BF01425446 - C. Poor and D. S. Yuen, http://www.siegelmodularforms.org.
- C. Schembri.
*Examples of genuine false elliptic curves which are modular*, https://arxiv.org/abs/1804.07225 (2018). - René Schoof,
*Abelian varieties over $\Bbb Q$ with bad reduction in one prime only*, Compos. Math.**141**(2005), no. 4, 847–868. MR**2148199**, DOI 10.1112/S0010437X05001107 - René Schoof,
*Semistable abelian varieties with good reduction outside 15*, Manuscripta Math.**139**(2012), no. 1-2, 49–70. MR**2959670**, DOI 10.1007/s00229-011-0509-y - René Schoof,
*On the modular curve $X_0(23)$*, Geometry and arithmetic, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2012, pp. 317–345 (English, with English and Dutch summaries). MR**2987668**, DOI 10.4171/119-1/19 - Jean-Pierre Serre,
*Local fields*, Graduate Texts in Mathematics, vol. 67, Springer-Verlag, New York-Berlin, 1979. Translated from the French by Marvin Jay Greenberg. MR**554237**

## Additional Information

**Armand Brumer**- Affiliation: Department of Mathematics, Fordham University, Bronx, New York 10458
- MR Author ID: 272178
- Email: brumer@fordham.edu
**Kenneth Kramer**- Affiliation: Department of Mathematics, Queens College (CUNY), Flushing, New York 11367; and Department of Mathematics, The Graduate Center of CUNY, New York, New York 10016
- MR Author ID: 194747
- Email: kkramer@qc.cuny.edu
- Received by editor(s): August 31, 2018
- Received by editor(s) in revised form: November 25, 2018
- Published electronically: May 1, 2019
- © Copyright 2019 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**372**(2019), 2251-2254 - MSC (2010): Primary 11G10; Secondary 14K15, 11F46
- DOI: https://doi.org/10.1090/tran/7792
- MathSciNet review: 3976591