Optimal threshold for a random graph to be 2-universal
Authors:
Asaf Ferber, Gal Kronenberg and Kyle Luh
Journal:
Trans. Amer. Math. Soc. 372 (2019), 4239-4262
MSC (2010):
Primary 05C80, 05C60
DOI:
https://doi.org/10.1090/tran/7727
Published electronically:
April 18, 2019
MathSciNet review:
4009429
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: For a family of graphs , a graph
is
-universal if
contains every graph in
as a (not necessarily induced) subgraph. For the family of all graphs on
vertices and of maximum degree at most two,
, we prove that there exists a constant
such that for
the binomial random graph
is typically
-universal. This bound is optimal up to the constant factor as illustrated in the seminal work of Johansson, Kahn, and Vu for triangle factors. Our result improves significantly on the previous best bound of
due to Kim and Lee. In fact, we prove the stronger result that for
, the family of all graphs on
vertices, of maximum degree at most two and of girth at least
,
is typically
-universal when
This result is also optimal up to the constant factor. Our results verify (in a weak form) a classical conjecture of Kahn and Kalai.
- [1] Noga Alon and Vera Asodi, Sparse universal graphs, J. Comput. Appl. Math. 142 (2002), no. 1, 1–11. Probabilistic methods in combinatorics and combinatorial optimization. MR 1910514, https://doi.org/10.1016/S0377-0427(01)00455-1
- [2] Noga Alon and Michael Capalbo, Sparse universal graphs for bounded-degree graphs, Random Structures Algorithms 31 (2007), no. 2, 123–133. MR 2343715, https://doi.org/10.1002/rsa.20143
- [3] Noga Alon and Michael Capalbo, Optimal universal graphs with deterministic embedding, Proceedings of the Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms, ACM, New York, 2008, pp. 373–378. MR 2485323
- [4] Noga Alon, Michael Capalbo, Yoshiharu Kohayakawa, Vojtěch Rödl, Andrzej Ruciński, and Endre Szemerédi, Universality and tolerance (extended abstract), 41st Annual Symposium on Foundations of Computer Science (Redondo Beach, CA, 2000) IEEE Comput. Soc. Press, Los Alamitos, CA, 2000, pp. 14–21. MR 1931800, https://doi.org/10.1109/SFCS.2000.892007
- [5] Noga Alon, Michael Capalbo, Yoshiharu Kohayakawa, Vojtěch Rödl, Andrzej Ruciński, and Endre Szemerédi, Near-optimum universal graphs for graphs with bounded degrees (extended abstract), Approximation, randomization, and combinatorial optimization (Berkeley, CA, 2001) Lecture Notes in Comput. Sci., vol. 2129, Springer, Berlin, 2001, pp. 170–180. MR 1910361, https://doi.org/10.1007/3-540-44666-4_20
- [6] Noga Alon and Zoltán Füredi, Spanning subgraphs of random graphs, Graphs Combin. 8 (1992), no. 1, 91–94. MR 1157513, https://doi.org/10.1007/BF01271712
- [7] Noga Alon, Michael Krivelevich, and Benny Sudakov, Embedding nearly-spanning bounded degree trees, Combinatorica 27 (2007), no. 6, 629–644. MR 2384408, https://doi.org/10.1007/s00493-007-2182-z
- [8] Noga Alon and Joel H. Spencer, The probabilistic method, 4th ed., Wiley Series in Discrete Mathematics and Optimization, John Wiley & Sons, Inc., Hoboken, NJ, 2016. MR 3524748
- [9] L. Babai, F. R. K. Chung, P. Erdős, R. L. Graham, and J. H. Spencer, On graphs which contain all sparse graphs, Theory and practice of combinatorics, North-Holland Math. Stud., vol. 60, North-Holland, Amsterdam, 1982, pp. 21–26. MR 806964
- [10] József Balogh, Béla Csaba, Martin Pei, and Wojciech Samotij, Large bounded degree trees in expanding graphs, Electron. J. Combin. 17 (2010), no. 1, Research Paper 6, 9. MR 2578901
- [11] József Balogh, Béla Csaba, and Wojciech Samotij, Local resilience of almost spanning trees in random graphs, Random Structures Algorithms 38 (2011), no. 1-2, 121–139. MR 2768886, https://doi.org/10.1002/rsa.20345
- [12] Małgorzata Bednarska and Tomasz Łuczak, Biased positional games for which random strategies are nearly optimal, Combinatorica 20 (2000), no. 4, 477–488. MR 1804821, https://doi.org/10.1007/s004930070002
- [13] Sandeep N. Bhatt, F. R. K. Chung, F. T. Leighton, and Arnold L. Rosenberg, Universal graphs for bounded-degree trees and planar graphs, SIAM J. Discrete Math. 2 (1989), no. 2, 145–155. MR 990447, https://doi.org/10.1137/0402014
- [14] Béla Bollobás, Modern graph theory, Graduate Texts in Mathematics, vol. 184, Springer-Verlag, New York, 1998. MR 1633290
- [15] M. R. Capalbo and S. R. Kosaraju, Small universal graphs, Annual ACM Symposium on Theory of Computing (Atlanta, GA, 1999) ACM, New York, 1999, pp. 741–749. MR 1798099, https://doi.org/10.1145/301250.301446
- [16] F. R. K. Chung and R. L. Graham, On graphs which contain all small trees, J. Combinatorial Theory Ser. B 24 (1978), no. 1, 14–23. MR 505812, https://doi.org/10.1016/0095-8956(78)90072-2
- [17] F. R. K. Chung and R. L. Graham, On universal graphs, Second International Conference on Combinatorial Mathematics (New York, 1978), Ann. New York Acad. Sci., vol. 319, New York Acad. Sci., New York, 1979, pp. 136–140. MR 556017
- [18] F. R. K. Chung and R. L. Graham, On universal graphs for spanning trees, J. London Math. Soc. (2) 27 (1983), no. 2, 203–211. MR 692525, https://doi.org/10.1112/jlms/s2-27.2.203
- [19] F. R. K. Chung and R. L. Graham, On graphs which contain all small trees, J. Combinatorial Theory Ser. B 24 (1978), no. 1, 14–23. MR 505812, https://doi.org/10.1016/0095-8956(78)90072-2
- [20] David Conlon, Asaf Ferber, Rajko Nenadov, and Nemanja Škorić, Almost-spanning universality in random graphs, Random Structures Algorithms 50 (2017), no. 3, 380–393. MR 3632416, https://doi.org/10.1002/rsa.20661
- [21] Domingos Dellamonica Jr., Yoshiharu Kohayakawa, Vojtěch Rödl, and Andrzej Ruciński, An improved upper bound on the density of universal random graphs, Random Structures Algorithms 46 (2015), no. 2, 274–299. MR 3302898, https://doi.org/10.1002/rsa.20545
- [22] P. Erdős and A. Rényi, On the evolution of random graphs, Magyar Tud. Akad. Mat. Kutató Int. Közl. 5 (1960), 17–61 (English, with Russian summary). MR 0125031
- [23] P. Erdős and A. Rényi, On the existence of a factor of degree one of a connected random graph, Acta Math. Acad. Sci. Hungar. 17 (1966), 359–368. MR 200186, https://doi.org/10.1007/BF01894879
- [24] Asaf Ferber, Kyle Luh, and Oanh Nguyen, Embedding large graphs into a random graph, Bull. Lond. Math. Soc. 49 (2017), no. 5, 784–797. MR 3742445, https://doi.org/10.1112/blms.12066
- [25] Asaf Ferber, Rajko Nenadov, and Ueli Peter, Universality of random graphs and rainbow embedding, Random Structures Algorithms 48 (2016), no. 3, 546–564. MR 3481273, https://doi.org/10.1002/rsa.20596
- [26] J. Friedman and N. Pippenger, Expanding graphs contain all small trees, Combinatorica 7 (1987), no. 1, 71–76. MR 905153, https://doi.org/10.1007/BF02579202
- [27] P. E. Haxell, Tree embeddings, J. Graph Theory 36 (2001), no. 3, 121–130. MR 1814529, https://doi.org/10.1002/1097-0118(200103)36:3<121::AID-JGT1000>3.0.CO;2-U
- [28] Svante Janson, Tomasz Łuczak, and Andrzej Ruciński, An exponential bound for the probability of nonexistence of a specified subgraph in a random graph, Random graphs ’87 (Poznań, 1987) Wiley, Chichester, 1990, pp. 73–87. MR 1094125
- [29] Svante Janson, Tomasz Łuczak, and Andrzej Ruciński, An exponential bound for the probability of nonexistence of a specified subgraph in a random graph, Random graphs ’87 (Poznań, 1987) Wiley, Chichester, 1990, pp. 73–87. MR 1094125
- [30] Daniel Johannsen, Michael Krivelevich, and Wojciech Samotij, Expanders are universal for the class of all spanning trees, Combin. Probab. Comput. 22 (2013), no. 2, 253–281. MR 3021334, https://doi.org/10.1017/S0963548312000533
- [31] Anders Johansson, Jeff Kahn, and Van Vu, Factors in random graphs, Random Structures Algorithms 33 (2008), no. 1, 1–28. MR 2428975, https://doi.org/10.1002/rsa.20224
- [32] Jeff Kahn and Gil Kalai, Thresholds and expectation thresholds, Combin. Probab. Comput. 16 (2007), no. 3, 495–502. MR 2312440, https://doi.org/10.1017/S0963548307008474
- [33] Jeong Han Kim and Sang June Lee, Universality of random graphs for graphs of maximum degree two, SIAM J. Discrete Math. 28 (2014), no. 3, 1467–1478. MR 3259784, https://doi.org/10.1137/130942437
- [34] Michael Krivelevich, Embedding spanning trees in random graphs, SIAM J. Discrete Math. 24 (2010), no. 4, 1495–1500. MR 2746703, https://doi.org/10.1137/100805753
- [35] R. Montgomery, Embedding bounded degree spanning trees in random graphs, preprint, arXiv:1405.6559, 2014.
- [36] L. Pósa, Hamiltonian circuits in random graphs, Discrete Math. 14 (1976), no. 4, 359–364. MR 389666, https://doi.org/10.1016/0012-365X(76)90068-6
- [37] Oliver Riordan, Spanning subgraphs of random graphs, Combin. Probab. Comput. 9 (2000), no. 2, 125–148. MR 1762785, https://doi.org/10.1017/S0963548399004150
- [38] Vojtěch Rödl, A note on universal graphs, Ars Combin. 11 (1981), 225–229. MR 629872
- [39] Douglas B. West, Introduction to graph theory, Prentice Hall, Inc., Upper Saddle River, NJ, 1996. MR 1367739
Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 05C80, 05C60
Retrieve articles in all journals with MSC (2010): 05C80, 05C60
Additional Information
Asaf Ferber
Affiliation:
Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
Email:
ferbera@mit.edu
Gal Kronenberg
Affiliation:
School of Mathematical Sciences, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
Email:
galkrone@mail.tau.ac.il
Kyle Luh
Affiliation:
Center of Mathematical Sciences and Applications, Harvard University, Cambridge, Massachusetts 02138
Email:
kluh@cmsa.fas.harvard.edu
DOI:
https://doi.org/10.1090/tran/7727
Keywords:
Random graphs,
universal graphs,
universality,
graph embedding
Received by editor(s):
February 3, 2017
Received by editor(s) in revised form:
August 15, 2018
Published electronically:
April 18, 2019
Additional Notes:
The second author was supported by the Prof. Rahamimoff Travel Grants Program for Young Scientists of the US-Israel Binational Science Foundation (BSF)
The third author was supported by the National Science Foundation under Award No. 1702533.
Article copyright:
© Copyright 2019
American Mathematical Society