On Riesz type inequalities for harmonic mappings on the unit disk
HTML articles powered by AMS MathViewer
- by David Kalaj PDF
- Trans. Amer. Math. Soc. 372 (2019), 4031-4051 Request permission
Abstract:
We prove some sharp inequalities for complex harmonic functions on the unit disk. The results extend a M. Riesz conjugate function theorem and some well-known estimates for holomorphic functions. We apply some of results to the isoperimetric inequality for harmonic mappings.References
- Sheldon Axler, Paul Bourdon, and Wade Ramey, Harmonic function theory, Graduate Texts in Mathematics, vol. 137, Springer-Verlag, New York, 1992. MR 1184139, DOI 10.1007/b97238
- Torsten Carleman, Zur Theorie der Minimalflächen, Math. Z. 9 (1921), no. 1-2, 154–160 (German). MR 1544458, DOI 10.1007/BF01378342
- Matts Essén, A superharmonic proof of the M. Riesz conjugate function theorem, Ark. Mat. 22 (1984), no. 2, 241–249. MR 765412, DOI 10.1007/BF02384381
- Fengbo Hang, Xiaodong Wang, and Xiaodong Yan, Sharp integral inequalities for harmonic functions, Comm. Pure Appl. Math. 61 (2008), no. 1, 54–95. MR 2361304, DOI 10.1002/cpa.20193
- Haakan Hedenmalm, Boris Korenblum, and Kehe Zhu, Theory of Bergman spaces, Graduate Texts in Mathematics, vol. 199, Springer-Verlag, New York, 2000. MR 1758653, DOI 10.1007/978-1-4612-0497-8
- B. Hollenbeck, N. J. Kalton, and I. E. Verbitsky, Best constants for some operators associated with the Fourier and Hilbert transforms, Studia Math. 157 (2003), no. 3, 237–278. MR 1980300, DOI 10.4064/sm157-3-2
- Brian Hollenbeck and Igor E. Verbitsky, Best constants for the Riesz projection, J. Funct. Anal. 175 (2000), no. 2, 370–392. MR 1780482, DOI 10.1006/jfan.2000.3616
- Brian Hollenbeck and Igor E. Verbitsky, Best constant inequalities involving the analytic and co-analytic projection, Topics in operator theory. Volume 1. Operators, matrices and analytic functions, Oper. Theory Adv. Appl., vol. 202, Birkhäuser Verlag, Basel, 2010, pp. 285–295. MR 2723282, DOI 10.1007/978-3-0346-0158-0_{1}5
- Lars Hörmander, An introduction to complex analysis in several variables, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1966. MR 0203075
- Loukas Grafakos, Best bounds for the Hilbert transform on $L^p(\textbf {R}^1)$, Math. Res. Lett. 4 (1997), no. 4, 469–471. MR 1470418, DOI 10.4310/MRL.1997.v4.n4.a3
- D. Kalaj, On Riesz type inequalities for harmonic mappings on the unit disk, arXiv:1701.04785v2 (2017).
- David Kalaj and Elver Bajrami, On some Riesz and Carleman type inequalities for harmonic functions in the unit disk, Comput. Methods Funct. Theory 18 (2018), no. 2, 295–305. MR 3806548, DOI 10.1007/s40315-017-0226-y
- David Kalaj, Isoperimetric inequality for the polydisk, Ann. Mat. Pura Appl. (4) 190 (2011), no. 2, 355–369. MR 2786177, DOI 10.1007/s10231-010-0153-2
- David Kalaj and Romeo Meštrović, Isoperimetric type inequalities for harmonic functions, J. Math. Anal. Appl. 373 (2011), no. 2, 439–448. MR 2720695, DOI 10.1016/j.jmaa.2010.08.009
- Miodrag Mateljević, The isoperimetric inequality and some extremal problems in $H^{1}$, Analytic functions, Kozubnik 1979 (Proc. Seventh Conf., Kozubnik, 1979), Lecture Notes in Math., vol. 798, Springer, Berlin, 1980, pp. 364–369. MR 577467
- M. Mateljević and M. Pavlović, New proofs of the isoperimetric inequality and some generalizations, J. Math. Anal. Appl. 98 (1984), no. 1, 25–30. MR 728515, DOI 10.1016/0022-247X(84)90276-2
- S. K. Pichorides, On the best values of the constants in the theorems of M. Riesz, Zygmund and Kolmogorov, Studia Math. 44 (1972), 165–179. (errata insert). MR 312140, DOI 10.4064/sm-44-2-165-179
- Kurt Strebel, Quadratic differentials, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 5, Springer-Verlag, Berlin, 1984. MR 743423, DOI 10.1007/978-3-662-02414-0
- I. E. Verbitsky, Estimate of the norm of a function in a Hardy space in terms of the norms of its real and imaginary parts, Linear operators. Mat. Issled. 54 (1980), 16–20 (Russian); Amer. Math. Soc. Transl., Ser. 124 (1984), 11–15 (English transl.). MR 81k:30046, 85m:00008
- A. Zygmund, Trigonometric series: Vols. I, II, Cambridge University Press, London-New York, 1968. Second edition, reprinted with corrections and some additions. MR 0236587
Additional Information
- David Kalaj
- Affiliation: Faculty of Natural Sciences and Mathematics, University of Montenegro, Cetinjski put b.b. 81000 Podgorica, Montenegro
- MR Author ID: 689421
- Email: davidk@ac.me
- Received by editor(s): December 17, 2017
- Received by editor(s) in revised form: July 19, 2018
- Published electronically: March 26, 2019
- © Copyright 2019 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 372 (2019), 4031-4051
- MSC (2010): Primary 47B35
- DOI: https://doi.org/10.1090/tran/7808
- MathSciNet review: 4009386